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ABSTRACT 

 

The work presented in this study demonstrates the effect of the hygroscopic potash lye 

catalyst concentration on the waste chicken fat methyl ester production. The aim of this 

paper is to determine the effect of temperature, catalyst ratio and methanol ratio on 

fatty acid methyl ester (FAME) yield from waste chicken fat (WCF). The finding shows 

the optimum yield were 95.4 % with 0.006 w/w hygroscopic potash lye catalyst and  

0.3 w/w methanol at 50°C. The final analysis of this study identifies the FAME density 

was 873.4 kg/m3, the iodine value, 117 g I/100 g and the acid value, 0.561 mg KOH/g. 

Moreover, the compositions of fatty acids were 0.22 % of methyl laurate (C13H26O2), 

19.98 % of methyl palmitate, (C17H34O2), 41.08 % of methyl stearate (C19H38O2) and 

0.17 % of methyl linoleate (C19H34O2) henceforth this FAME produced exhibit 

properties very similar to ASTM D6751 and EN 14214. This study confirms that the 

FAME transesterified from waste animal fats with the hygroscopic potash lye catalyst 

could be a potential alternative to petrodiesel. 
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1.0 INTRODUCTION 

 

In recent years, alternative lipids as oil residues in waste frying cooking oil and inedible 

waste animal fats have gained considerable attention from green fuel sector. Today’s 

energy system is unsustainable because of equity issues and technology competition as 

well as economic, political and environmental concern that have implications far into 

the future. Consequently, residues were used in a recycle program to take advantage of 

these low cost and low quality resources enabling integration of the sustainable energy 

supply and waste management in food processing facilities.  In this situation, there is a 

need to find ways to convert the waste into biofuel. Related to this trend, biodiesel is an 

alternative fuel consists of fatty acid methyl esters (FAME) produced by 

transesterification of triglycerides with methanol. It is produced by chemically reacting 
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the oil or ester with an alcohol in the presence of a base or acid catalyst. The products of 

this reaction are the monoesters, known as biodiesel; and the alcohol named glycerin, 

which is a high value byproduct for renewable fuel production. For instance, waste 

chicken fat (WCF) have a great potential as feedstocks for biofuel industry because they 

are not commodities, hence having a lower market value and almost zero cost.  

 

Cetane number is an important parameter to the evaluation of the self-ignitability of 

fuel. Normally, the cetane number of diesel fuel is from 45 to 60 (Ruina et al., 2014). 

Darunde (2012) claimed that the saturated fatty acids from WCF are the source of high 

cetane number (CN). Biodiesel of animal origin has positive properties such as large 

values of heating value (HV) and CN. In general the HV and CN of petroleum-based 

diesel fuel range between 40 and 44. The higher the cetane number, the more efficient 

the fuel. Animal fat biodiesel has a higher CN than plant oil biodiesel because of its 

oxygen content. Better combustion is achieved as a result of less ignition delay time or 

higher CN (Mustafa and Havva, 2010). The WCF with a higher CN will indicate  a 

shorter ignition delay time, more complete combustion of the fuel and hence should 

improve the fuel efficiency.  

 

In addition, the WCF FAME able to present a number of environmental, economic and 

social advantages. Biodiesel and conventional diesel properties are very similar; 

however biodiesel has higher CN than conventional diesel, virtually no sulfur and no 

aromatics and high flash point. Due to the near absence of sulfur in the WCF, it helps to 

reduce the problem of acid rain caused by emission of pollutant from fuels burning. The 

lack of aromatic hydrocarbon (benzene, toluene, etc.) in biodiesel reduces unregulated 

emissions as well as ketone and benzene. In relation to that, breathing particulate matter 

has been found to be hazardous for human health, especially in respiratory system. This 

might due to its content that comprising of  elemental carbon (~31 %), sulfates and 

moisture (~14 %), unburnt fuel (~7 %), unburnt lubricating oil (~40 %) and traces of 

other substances (Idris, 2016).  

 

Due to the scarcity of fossil fuels and increase of population, there is an urgent need for 

renewable energy sources that can replace petrodiesel. This study focuses on 

investigating the effect of the hygroscopic potash lye catalyst concentration (wt.%) that 

represents the catalytic acitvity on the WCF FAME transesterification. The current 

findings add to a growing body of work such as the effect of the reaction parameters, for 

examples catalyst dosage, molar ratios, and the reaction temperature. As a result, these 

biodeiesel specifications research findings were compared with the specifications in EN 

14214 standard and ASTM D6751 for biodiesel.  

 

 

2.0 METHODOLOGY 

 

Common vegetable oil and animal fats are esters of saturated and unsaturated 

monocarboxylic acids with trihydric alcohol glyceride. These esters are known as 

triglyceride which react with alcohol in the presence of catalyst. This reaction is known 

as transesterification (José et. al, 2016). Figure 1 shows the transesterification reaction 

whereby the R1, R2 and R3 are long chain hydrocarbons or also known as fatty acids.  
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Figure 1. Transesterification reaction 

 

Biodiesel, chemically known as FAME, is a biodegradable and environmentally benign 

nonpetroleum-based fuel. Bhatti et. al. (2008) also stated that there are normally five 

types of chains in vegetable oil and animal fat which are palmitic, stearic, oleic, linoleic 

and linolenic. Vegetable oil and animal fats may consist of small amount of water and 

FFA. The hygroscopic potash lye catalyst refers to the strong base catalyst, generally 

consumed, potassium hydroxide (KOH). In the hygroscopic potash lye-catalyzed FAME 

transesterification, the base catalyst will react with the FFA to form the byproduct, soap 

and water. This process is known as saponification. Several studies (Agarwal, 2007: 

Demirbas, 2008) have discovered that the saponification reaction is undesirable because 

the soap lowers the FAME yield and obstructs the separation of the esters from the 

glycerol. Consequently, the soap formation can increase the catalyst concentration 

hence the process will involve a higher cost. In the hygroscopic potash lye-catalyzed 

transesterification, the catalyst activity declines due to side reactions. The key problem 

with this explanation is the absence of chain transfer and rupture reactions of the 

catalyst. 

 

2.1 Acid Esterification as FFA Pretreatment 

 

Michelle and Angelo (2016) concluded that acid esterification is the most promising 

high FFA concentration pretreatment of the extracted oil in WCF. The FFA will be 

converted to FAME by direct acid esterification and henceforward the water needs to be 

removed. At the end of the esterification reaction, the acid catalyst has to be neutralized 

in order to isolate the product. This finding, while preliminary, suggests that the FFA 

conversion rate of 80 % was set as a cutoff point to evaluate the effectiveness of the 

esterification reaction. The FFA conversion rate was examined by Equation (1). 

 

FFA Conversion (%) =  
(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐹𝐹𝐴−𝐹𝑖𝑛𝑎𝑙 𝐹𝐹𝐴)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐹𝐹𝐴
 ×  100 %         (1) 

 

where initial FFA is the initial acid value (mg KOH/g) and final FFA represents the  

final acid value (mg KOH/g). 

 

The current investigation was limited by three different factors which are the reaction 

temperature, the methanol to oil ratio and the hygroscopic potash lye catalyst to oil 

ratio. The experiment was conducted at three different temperatures, 50°C, 60°C and 

70°C.  As for the hygroscopic potash lye catalyst to oil ratio, the values are 0.006 w/w, 

0.008 w/w, 0.01 w/w and 0.012 w/w. There are four different methanol to oil ratios 

established in this study which are 0.1 w/w, 0.2 w/w, 0.3 w/w and 0.4 w/w with 50 g of 

waste chicken fat per batch. The reaction time was kept constant throughout the 

experiment which was one hour.  
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3.0 RESULTS AND DISCUSSION 

 

3.1 Effect of Reaction Temperature to FAME 

 

The rate of reaction is influenced by the reaction temperature as per kinetics of reaction. 

The maximum yield of FAME was observed at temperature ranging from (50 ± 5)°C. 

Further increase in temperature has negative effect on the conversion. 

Transesterification can occur at different temperatures and thereupon the temperature 

meaningfully affects the reaction rate and the percentage yield of FAME. According to 

Figure 2, the highest percentage yield is at low reaction temperature, 50°C instead of 

60°C and 70°C.  

Figure 2. FAME percentage yield vs catalyst ratio 

 

3.2 Effect of Methanol Ratio to FAME 
 

The most striking result emerged from the data is that the optimum methanol ratio for 

transesterification is at 0.3 w/w significantly yield the highest biodiesel up to 95.4 %. 

Based on Figure 2 above, the current study found that the higher methanol ratio, the 

lower the FAME yield. According to Abdelrahman et al. (2016), with higher methanol 

amount, the FFA conversion increased but the yield decreased. This is due to the 

reversible transesterification reaction as the additional methanol accelerate considerably 

with an adjustment of the new equilibrium. A high amount of methanol interferes the 

separation of glycerol due to an increase in solubility while the remaining glycerol 

remaining in the solution drives the reaction equilibrium again, resulting in the lower 

yield of biodiesel. Therefore, it can be concluded that the higher the amount of the 

methanol used, the lower the biodiesel yield. Similar trend on the effect of methanol 

ratio to biodiesel yield was found by Komintarachat and Chuepeng (2010) in their 

studies. According to Idris (2016), higher molar ratio of alcohol to oil interferes in the 

separation of glycerol. On the other, hand with lower molar ratio, more reaction time is 
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required and conversion increases but recovery decreases while the optimum alcohol 

ratio also depends on the type and quality of oil. 

 

3.3 Effect of Catalyst Ratio to FAME 
 

The effect of hygroscopic potash lye catalyst loading (wt.%) on FAME yield was also 

studied. A catalyst functions to accelerate the reaction rate. The catalyst is an important 

factor in transesterification of waste chicken fat into biodiesel. The catalysts that are 

commonly used is sodium hydroxide (NaOH).  In this study, the base catalyst used was 

hygroscopic potash lye catalyst with similar name, KOH. Figure 2 shows the results of 

preliminary analysis that with more catalyst loading, the more yield is obtained. There 

was a significant positive correlation, with higher methanol amount - the FFA 

conversion increased but the yield decreased. The present findings seem to be consistent 

with other research found in Komintarachat and Chuepeng (2010). The 

transesterification reaction is reversible and any additional methanol would accelerate 

considerably the adjustment to a new equilibrium. A high amount of methanol interferes 

with the separation of glycerol due to an increase in solubility while the glycerol 

remaining in the solution drives the reaction equilibrium back, resulting in the lower 

yield of biodiesel. 

 

3.4     FAME Analysis 

 

The composition of biodiesel was determined using gas chromatography (GC) with 

retention time at 20 minutes. There are four fatty acids in the biodiesel identified 

namely methyl laurate, methyl palmitate, and methyl stearate and methyl linoleate.  

The FAME has the following composition: 0.22% of methyl laurate  

(C13H26O2), 19.98 % of methyl palmitate, (C17H34O2), 41.08 % of methyl stearate 

(C19H38O2)  and 0.17 % of methyl linoleate (C19H34O2). 

 

Table 1. Biodiesel properties comparison 

Characteristic 
Experimental 

Value 
EN 14214 ASTM D6751 

Density, kg/m3 873.4 860-900 860-900 

Acid Value,  mg KOH/g 0.561 < 0.5 < 0.8 

Iodine Value g I/100g 117.0 < 120 < 120 

 

 

4.0 CONCLUSION  

 

The empirical findings in this study shows that the optimum parameters for producing 

biodiesel in this project is at 50°C with the ratio of hygroscopic potash lye catalyst to oil 

0.006 w/w and methanol to oil ratio of 0.3 w/w. The yield obtained at this parameter is 

47.7 g of biodiesel and the percentage of yield is 95.4 %. The organic compounds in the 

biodiesel produced consist of several fatty acids namely methyl laurate, methyl 

palmitate, methyl stearate and methyl linoleate. The iodine value of the biodiesel 

produced is 117g I/100 g while the density obtained is 873.4 kg/m3 and the Acid Value 

of 0.561 mg KOH/g meets the ASTM D6751 and EN 14214. 
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