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ABSTRACT

In this paper, the effect of radiation on magnetohydrodynamic free 
convection boundary layer flow near the lower stagnation point of a 
solid sphere with Newtonian heating, in which the heat transfer from the 
surface is proportional to the local surface temperature, is considered. The 
transformed boundary layer equations in the form of partial differential 
equations are solved numerically using an implicit finite difference scheme 
known as the Keller-box method. Numerical solutions are obtained for 
the local wall temperature, the skin friction coefficient, as well as the 
velocity and temperature profiles. The features of the flow and heat transfer 
characteristics for various values of the Prandtl number Pr, magnetic 
parameter M, radiation parameter   and the conjugate parameter   are 
analyzed and discussed.

KEYWORDS: Magnetohydrodynamic (MHD); Newtonian heating; 
Radiation effects; Solid sphere Stagnation point

 
1.0 INTRODUCTION

The effect of radiation on magnetohydrodynamic flow, heat and mass 
transfer problems has become industrially more important. Many 
engineering processes occur at high temperatures, the knowledge of 
radiation heat transfer leads significant role in the design of equipment.  
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Nuclear power plants, gas turbines and various propulsion devices 
for aircraft, missiles, satellites and space vehicles are examples of 
such engineering processes. At high operating temperature, the 
radiation effect can be quite significant (Sivaiah et al., 2010). Nazar 
et al., (2002a, 2002b) considered the free convection boundary layer 
flows on a sphere in a micropolar fluid without effect of radiation and 
magnetohydrodynamic with constant heat flux (CHF) and constant 
wall temperature (CWT), respectively. Molla et al., Molla et al., (2011), 
Akhter & Alim (2008) and Miraj et al., (2010) studied the radiation effect 
on free convection flow from an isothermal sphere with constant wall 
temperature, constant heat flux and in presence of heat generation, 
respectively. The viscous dissipation and  magnetohydrodynamic 
effect on a natural convection flow over a sphere in the presence of heat 
generation have been presented by Ganesan & Palani (2004), Alam et 
al., (2007) and Molla et al., (2005).

For the condition Newtonian heating, many of the research were 
written with this condition It seems that Merkin (1994) was the first 
to use the term Newtonian heating for the problem of free convection 
over a vertical flat plate. Lesnic et al., (1999, 2000, 2004) and Pop et 
al., (2000) to study a free convection boundary layer over vertical and 
horizontal surfaces as well as over a small inclined flat plate from the 
horizontal surface embedded in a porous medium with Newtonian 
heating. Recently Salleh et al., (2010a, 2010b, 2010c, 2012) studied the 
free and mixed convection boundary layer flows on a sphere with 
Newtonian heating in a viscous and micropolar fluid, respectively.

The situation with Newtonian heating arises in what are usually termed 
conjugate convective flows, where the heat is supplied to the convective 
fluid through a bounding surface with a finite heat capacity Merkin 
(1994). This configuration occurs in many important engineering 
devices, for example in heat exchanger where the conduction in solid 
tube wall is greatly influenced by the convection in the fluid flowing 
over it. Further, for conjugate heat transfer around fins where the 
conduction within the fin and the convection in the fluid surrounding 
it must be simultaneously analyzed in order to obtain the vital design 
information and also in convection flows set-up when the bounding 
surfaces absorb heat by solar radiation see Chaudhary & Jain (2006, 
2007). This results in the heat transfer rate through the surface being 
proportional to the local difference in the temperature with the ambient 
conditions. 

Recent demands in heat transfer engineering have requested researchers 
to develop various new types of heat transfer equipment with superior 
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performance, especially compact and light-weight ones. Increasing 
the need for small-size units, focuses have been cast on the effects of 
the interaction between developments of the thermal boundary layers 
in both fluid streams, and of axial wall conduction, which usually 
affects the heat exchangers performance. Therefore, we conclude that 
the conventional assumption of the absence of interrelation between 
coupled conduction convection effects is not always realistic, and 
this interrelation must be considered when evaluating the conjugate 
heat transfer processes in many practical engineering applications 
Chaudhary & Jain (2007). Excellent reviews of the topic of conjugate 
heat transfer problems can be found in the book by Martynenko & 
Khramtsov (2005).

Therefore, the aim of the present paper is to study the effect of radiation 
on magnetohydrodynamic free convection boundary layer flow on 
a solid sphere with convective boundary conditions. The governing 
boundary layer equations are first transformed into a system of non-
dimensional equations via the non-dimensional variables, and then 
into non-similar equations before they are solved numerically by the 
Keller-box method, as described in the book Cebeci & Bradshaw (1984). 

2.0 MATHEMATICAL ANALYSES

Consider a heated sphere of radius a, which is immersed in a viscous 

and incompressible fluid of ambient temperature T∞  . The surface of 
the sphere is subjected to a Newtonian heating (NH). We assume that 
the equations are subjected to a Newtonian heating (NH). Under the 
Boussinesq and boundary layer approximations, the basic equations 
are 
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It can be seen that at the lower stagnation point of the sphere, ),0( ≈x equations (14) and (15) 
reduce to the following ordinary differential equations:

22 0f ff f Mfθ′′′ ′′ ′ ′+ − + − = (17)

1 41 2 0
Pr 3 R

f
N

θ θ
 

′′ ′+ + = 
 

(18)

and the boundary conditions (16) become

(0) (0) 0,f f ′= = (0) (1 )θ γ θ′ = − +

0,f ′ → 0θ → as y →∞ (19)

where primes denote differentiation with respect to y.

3.0 RESULTS AND DISCUSSION

Equations (17) and (18) subject to the boundary conditions (19) were solved numerically 
using an efficient, implicit finite-difference method known as the Keller-box scheme for 
Newtonian heating (NH) with several parameters considered, namely, magnetic parameter 
M, radiation parameter RN , the Prandtl number Pr, the conjugate parameter γ and the 
coordinate running along the surface of the sphere, x.

In this paper, the results focused only on the case at the lower stagnation point, 0.x ≈
Values of Pr considered are Pr = 0.7, 1 and 7. It is worth mentioning that small values of Pr 
(≪1) physically correspond to liquid metals, which have high thermal conductivity but low 
viscosity, while large values of Pr (≫1) correspond to high-viscosity oils. It is worth 

subject to the boundary conditions
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3.0  RESULTS AND DISCUSSION

Equations (17) and (18) subject to the boundary conditions (19) were 
solved numerically using an efficient, implicit finite-difference method 
known as the Keller-box scheme for Newtonian heating (NH) with 
several parameters considered, namely, magnetic parameter M, 

radiation parameter RN , the Prandtl number Pr, the conjugate parameter 
γ  and the coordinate running along the surface of the sphere, x. 

In this paper, the results focused only on the case at the lower stagnation 
point, 0.x ≈  Values of Pr considered are Pr = 0.7, 1 and 7. It is worth 
mentioning that small values of Pr («1) physically correspond to liquid 
metals, which have high thermal conductivity but low viscosity, while 
large values of Pr (»1) correspond to high-viscosity oils. It is worth 
pointing out that specifically, Prandtl number Pr = 0.7, 1.0 and 7.0 
correspond to air, electrolyte solution and water, respectively.

Table 1 present the values of the wall temperature (0)θ   and the skin 
friction coefficient (0)f ′′   at the lower stagnation point of the sphere,   
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0,x ≈  when Pr = 0.7, 1, 7, M = 0, RN = ∞  and 1γ = . In order to verify the 
accuracy of the present method, the present results are compared with 
those reported by Salleh et al., (2010c). It is found that the agreement 
between the previously published results with the present ones is 
very good. We can conclude that this method works efficiently for the 
present problem and we are also confident that the results presented 
here are accurate.

Table 2 shown the values of the wall temperature (0)θ  and the skin 
friction coefficient (0)f ′′  at the lower stagnation point of the sphere,   

0,x ≈ for various values of NR  when Pr = 0.7, 1γ =   and M = 0, 5, 10. It 
is observed that, when the magnetic parameter M is fixed an increasing 
of the radiation parameter NR  show that both values of (0)θ  and   (0)f ′′

decreases, and also when NR is fixed, an increasing of M the values of   
and   increases.

Figures 1 and 2 shows the temperature and velocity profiles near the 
lower stagnation point of the sphere, 0,x ≈   when Pr = 0.7,  M = 5, 

1,5,10,RN = ∞  and 1γ =  , respectively. It is found that as NR  increases, 
the temperature and velocity profiles decreases.

The temperature and velocity profiles presented in Figure 3 and 4, 

respectively, near the lower stagnation point of the sphere, 0,x ≈   when 

Pr = 0.7, 10=RN   , M = 0,5,10 and 1γ =   shows that when the value of M  
increases, it is found that the temperature profiles also increases,  but 
the velocity profiles decreases. 

Table 1. Values of the wall temperature (0)θ   and the skin friction 
coefficient (0)f ′′  at the lower stagnation point of the sphere, 0,x ≈    

when Pr = 0.7, 1, 7, M = 0, 
RN = ∞   and 1γ =  

pointing out that specifically, Prandtl number Pr = 0.7, 1.0 and 7.0 correspond to air, 
electrolyte solution and water, respectively.

Table 1 present the values of the wall temperature (0)θ and the skin friction coefficient
(0)f ′′ at the lower stagnation point of the sphere, 0,x ≈ when Pr = 0.7, 1, 7, M = 0, 

RN = ∞ and 1γ = . In order to verify the accuracy of the present method, the present results 
are compared with those reported by Salleh et al. (2010c). It is found that the agreement 
between the previously published results with the present ones is very good. We can 
conclude that this method works efficiently for the present problem and we are also 
confident that the results presented here are accurate.

Table 2 shown the values of the wall temperature (0)θ and the skin friction coefficient
(0)f ′′ at the lower stagnation point of the sphere, 0,x ≈ for various values of RN when Pr

= 0.7, 1γ = and M = 0, 5, 10. It is observed that, when the magnetic parameter M is fixed 
an increasing of the radiation parameter ,RN show that both values of (0)θ and (0)f ′′
decreases, and also when RN is fixed, an increasing of M the values of (0)θ and (0)f ′′
increases.

Figures 1 and 2 shows the temperature and velocity profiles near the lower stagnation point 
of the sphere, 0,x ≈ when Pr = 0.7, M = 5, 1,5,10,RN = ∞ and 1γ = , respectively. It is 
found that as RN increases, the temperature and velocity profiles decreases.

The temperature and velocity profiles presented in Figure 3 and 4, respectively, near the 
lower stagnation point of the sphere, 0,x ≈ when Pr = 0.7, 10=RN , M = 0,5,10 and 1γ =
shows that when the value of M increases, it is found that the temperature profiles also 
increases,  but the velocity profiles decreases.

Table 1. Values of the wall temperature (0)θ and the skin friction coefficient (0)f ′′ at the lower stagnation 

point of the sphere, 0,x ≈ when Pr = 0.7, 1, 7, M = 0, RN = ∞ and 1γ =

Pr

(0)θ (0)f ′′
Salleh et al. 

(2010c) present Salleh et al. 
(2010c) present

0.7 26.4584 26.4595 8.9609 8.9626
1 17.2861 17.2884 6.1409 6.1413
7 3.3651 3.3669 1.2489 1.2490
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Table 2. Values of the wall temperature (0)θ  and the skin friction  
coefficient (0)f ′′   at the lower stagnation point of the sphere,  0,x ≈  for 

various values of RN  when Pr = 0.7, M = 0, 5, 10 and 1γ =

Table 2. Values of the wall temperature (0)θ and the skin friction coefficient (0)f ′′ at the lower stagnation 
point of the sphere, 0,x ≈ for various values of RN when Pr = 0.7, M = 0, 5, 10 and 1γ =

M = 0
Present 

M = 5
Present

M = 10
Present

RN (0)θ (0)f ′′ (0)θ (0)f ′′ (0)θ (0)f ′′
1 84.6126 24.2288 112.7021 26.5229 140.1570 28.63586
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Figure 4. Velocity profiles f ′ near the lower stagnation point of the sphere, 0,x ≈
when Pr = 0.7, 10,RN = M = 0,5,10 and 1γ =

4.0 CONCLUSIONS

In this paper, we have numerically studied the problem of the effect of radiation on 
magnetohydrodynamic free convection boundary layer flow near the lower stagnation point 
of a solid sphere with Newtonian heating (NH). It is shown how the Prandtl number Pr, 
magnetic parameter M, thermal radiation parameter RN and conjugate parameter γ affects 
the values of the temperature profiles (0)θ , the skin friction coefficient (0)f ′′ . We can 
conclude that

i. when Pr and M are fixed, as RN increases, the values of skin friction 
coefficient, temperature and velocity profiles decreases, 

ii. when Pr and RN are fixed, as M increases, the temperature profiles increases, 
but skin friction coefficient and velocity profiles decreases. 
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4.0  CONCLUSIONS

In this paper, we have numerically studied the problem of the effect 
of radiation on magnetohydrodynamic free convection boundary layer 
flow near the lower stagnation point of  a solid sphere with Newtonian 
heating (NH). It is shown how the Prandtl number Pr, magnetic 
parameter M, thermal radiation parameter NR  and conjugate parameter  
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i. when Pr and M are fixed, as   increases, the values 
of skin friction coefficient, temperature and velocity 
profiles decreases, 

ii. when Pr and   are fixed, as M increases, the 
temperature profiles increases, but  skin friction 
coefficient and velocity profiles decreases. 
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