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ABSTRACT

Porosity and water saturation are two fundamental parameters in reservoir 
characterization. In this study, for predicting both mentioned parameters 
artificial neural network was used as intelligent technique.  Five variables 
include neutron log, effective porosity, caliper log, bulk density, and 
sonic log were used from 3 wells from one of the Iranian oil fields. After 
normalizing data Seventy percent of data were used as training dataset and 
remainder for testing the network. Several feed –forward neural networks 
were operated to obtain best performance of different algorithms to train the 
network. Levenberge-Marquardt back-propagation algorithm was chosen 
as the training algorithm which had the best performance and was faster 
than other algorithms. Optimum neurons in the hidden layer for porosity 
and water saturation were obtained respectively. Results shown that Back-
propagation artificial neural network (BPANN) has a high ability to predict 
porosity and water saturation which correlation between real output and 
predicted output using BPANN were 0.82 and 0.93 respectively.

KEYWORDS: Porosity; water saturation; neural network; back- 
propagation algorithm

1.0 INTRODUCTION

Reservoir characterization is a process for quantitatively assigning 
reservoir prospects, such as porosity, permeability, and fluid saturations, 
while recognizing geologic information and uncertainties, in special 
variability. The immediate application of reservoir characterization 
is in reservoir modeling and simulation and any primary and/or 
enhanced recovery design process in petroleum and natural gas 
industry (Mohaghegh et al., 1996).
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Mathematical models used to calculate porosity from density log 
responses yield the absolute or total porosity of the formation. 
Absolute porosity is not useful for reservoir characterization because, 
due to the heterogeneity of the reservoir, some of the pores may be 
isolated and not connected to the pore network of the reservoir. These 
isolated pores neither contribute to the reserves of oil and gas nor to 
the production (Mohaghegh et al., 1996). Porosity and water saturation 
are two crucial parameters in the petroleum reservoirs. In the recent 
years, many novel techniques were suggested for determining these 
parameters (Mohaghegh et al., 1996; Nickravesh & Aminzadeh, 2001; 
Wong et al., 1995a; Nickravesh, 2004). The common methods that has 
been used is Back-Propagation Neural Network which has a high 
ability in prediction of these parameters (Nikravesh, 1998; Wong et al., 
1995b; Lim, 2003; 2005, Mohaghegh & Ameri, 2000). In this paper, the 
BPNNs are created using different training algorithms for selecting the 
best technique for predicting water saturation and porosity.

1.1 Back-Propagation Neural Network (BPNN)

The back-propagation algorithm neural network (BPNN) trained by 
the generalized delta rule (Rumelhart et al., 1986) is successfully used 
in many fields like petroleum and mining science problems.

To train a BPNN, the first input pattern is presented to an initially 
randomized BPNN, and the weights (including thresholds of nodes) 
adjusted in all the connection. Other pattern is then presented in 
succession, and the weights were adjusted from the previously 
determined values. This process continues until all patterns in the 
training set are exhausted (an iteration). The final solution is generally 
independent of the order in which the example patterns are presented. 
However, a final check can be performed by looking at the pattern 
error, Ep, the sum of the squares of the difference between the desired 
output and BPNN output for each pattern, and system error, Es, the 
average of all pattern errors, to determine whether the final BPNN 
solution satisfies all of the patterns presented to it within a certain error 
(Dai  and MacBeth, 1997).

The generalized delta rule which is used to train BPNNs can be 
mathematically written as:
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looking at the pattern error, Ep, the sum of the squares of the difference between the 
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The generalized delta rule which is used to train BPNNs can be mathematically written
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Δwijk (n +1) = ηδikoij + αΔwijk(n),                                                                                   (1)                                                                                                              

Where η is the learning rate and α the momentum rate. Δwijk is the change of the 
weighted connection between nij (nij is defined as the jth node in the ith layer) and ni+1 k,
oij the output of nij , and δik change in erroe as a function of the change in the network 
input to the ni+1 k . The quantity (n+1) indicates the (n+1)th step. This equation means 
the change of weights at the (n+1)th step should be similar to the change of weights 
undertaken at the nth step (Dai & MacBeth, 1997).

2.0 Artificial Neural Network Prediction

In this paper, a neural network is proposed to predict porosity and water saturation with 
feed-forward network. The input variable is a neutron log, effective porosity, caliper 
log, bulk density, and sonic log.  A feed - forward consists of one or more hidden layer 
and one input layer and one output layer. All input and output data should be 
transformed into a range of zero and one for entering to determine activation function.

The neural network is defined as a system of simple processing elements, called 
neurons, which are connected to a network by a set of weights. The operated structure 
of neural networks in this study has been demonstrated in the Figure 1. A two-layer 
ANN with a tan-sigmoid transfer function for the hidden layer and a linear transfer 
function for the output layer was used.

Where η is the learning rate and α the momentum rate. Δwijk is the 
change of the weighted connection between nij (nij is defined as the jth 
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node in the ith layer) and ni+1 k, oij the output of nij, and δik change in 
erroe as a function of the change in the network input to the ni+1 k . 
The quantity (n+1) indicates the (n+1)th step. This equation means the 
change of weights at the (n+1)th step should be similar to the change of 
weights undertaken at the nth step (Dai & MacBeth, 1997). 

2.0 ARTIFICIAL NEURAL NETWORK PREDICTION

In this paper, a neural network is proposed to predict porosity and 
water saturation with feed-forward network. The input variable is a 
neutron log, effective porosity, caliper log, bulk density, and sonic 
log.  A feed - forward consists of one or more hidden layer and one 
input layer and one output layer. All input and output data should 
be transformed into a range of zero and one for entering to determine 
activation function.

The neural network is defined as a system of simple processing 
elements, called neurons, which are connected to a network by a set 
of weights. The operated structure of neural networks in this study 
has been demonstrated in the Figure 1. A two-layer ANN with a tan-
sigmoid transfer function for the hidden layer and a linear transfer 
function for the output layer was used.

Figure 1. Topology of designed neural network

Learning is the main process in neural network operation because the simulation process 
depends on that (Jeirani & Mohebbi, 2006). Mathematically, learning is the process by 
which a set of weights is found that produces the expected output when a net is 
presented within an input. Therefore, ANNs learn tasks by changing the weight of links 
between nodes (Bean & Jutten, 2000; Bhat & Helle, 2002; Helle et al., 2001; 
Mohaghegh et al., 1994). Back-Propagation algorithms use input vectors and 
corresponding target vectors to train ANN. 

In this paper, 70% of data were chosen for training and remain for testing process. At
the start of training, the output of each node tends to be small. Consequently, the 
derivatives of the transfer function and changes in the connection weights are large with 
respect to the input. As learning progresses and the network reaches a local minimum in 
error surface, the node outputs approach stable values. Consequently, the derivatives of 
the transfer function with respect to input, as well as changes in the connection weights, 
are small.

Thirteen training algorithms in this study were used which basically utilize back-
propagation algorithm consist quasi-Newton (BFG), Bayesian regulation (BR), 
Conjugate gradient with Powell-Beale restarts (CGB), Conjugate gradient with Fletcher-
Reeves updates (CGF), Conjugate gradient with Polak-Ribiére updates (CGP), Gradient 
descent (GD),  Gradient descent with adaptive learning rate (GDA), Gradient descent 
with momentum (GDM), variable learning rate backpropagation (GDX),  One-step 
secant (OSS), Resilient backpropagation (RP), Scaled conjugate gradient (SCG), 
Levenberg-Marquardt (LM). More details about these algorithms are found in the 
MATLAB toolbox guide for neural network (Demuth & Beale, 2002).

There are two different ways in which this gradient descent algorithm can be 
implemented: incremental mode and batch mode. In the incremental mode, the gradient 
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within an input. Therefore, ANNs learn tasks by changing the weight 
of links between nodes (Bean & Jutten, 2000; Bhat & Helle, 2002; Helle 
et al., 2001; Mohaghegh et al., 1994). Back-Propagation algorithms use 
input vectors and corresponding target vectors to train ANN. 

In this paper, 70% of data were chosen for training and remain for 
testing process. At the start of training, the output of each node tends 
to be small. Consequently, the derivatives of the transfer function and 
changes in the connection weights are large with respect to the input. 
As learning progresses and the network reaches a local minimum in 
error surface, the node outputs approach stable values. Consequently, 
the derivatives of the transfer function with respect to input, as well as 
changes in the connection weights, are small.

Thirteen training algorithms in this study were used which basically 
utilize back-propagation algorithm consist quasi-Newton (BFG), 
Bayesian regulation (BR), Conjugate gradient with Powell-Beale 
restarts (CGB), Conjugate gradient with Fletcher-Reeves updates 
(CGF), Conjugate gradient with Polak-Ribiére updates (CGP), 
Gradient descent (GD),  Gradient descent with adaptive learning rate 
(GDA), Gradient descent with momentum (GDM), variable learning 
rate backpropagation (GDX),  One-step secant (OSS), Resilient 
backpropagation (RP), Scaled conjugate gradient (SCG), Levenberg-
Marquardt (LM). More details about these algorithms are found in the 
MATLAB toolbox guide for neural network (Demuth & Beale, 2002). 

There are two different ways in which this gradient descent algorithm 
can be implemented: incremental mode and batch mode. In the 
incremental mode, the gradient is computed and the weights are 
updated after each input is applied to the network. In the batch mode 
all of the inputs are applied to the network before the weights are 
updated. All of the algorithms in this study operate in the batch mode. 
Performance of all back-propagation algorithms are provided in the 
Table 1 according to correlation coefficient (R) and mean square error 
(MSE).
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Table 1. Comparison of Back-propagation algorithms for predicting 
porosity and water saturation of the reservoir

is computed and the weights are updated after each input is applied to the network. In 
the batch mode all of the inputs are applied to the network before the weights are 
updated. All of the algorithms in this study operate in the batch mode. Performance of 
all back-propagation algorithms are provided in the Table 1 according to correlation 
coefficient (R) and mean square error (MSE).

Table 1. Comparison of Back-propagation algorithms for predicting porosity and water saturation of the 
reservoir

Back-Propagation 
Algorithm

R-value MSE R- value MSE

BFG 0.7789 0.0199 0.9154 0.0124
BR 0.7961 0.0186 0.9225 0.0100
CGB 0.7533 0.0219 0.8959 0.0151
CGF 0.7629 0.0212 0.8973 0.0149
CGP 0.7704 0.0206 0.8931 0.0155
GD 0.4990 0.0476 0.5634 0.0581
GDA 0.5778 0.0348 0.7343 0.0356
GDM 0.3812 0.0505 0.6379 0.0477
GDX 0.6751 0.0276 0.7968 0.0280
LM 0.8011 0.0182 0.9264 0.0095
OSS 0.7528 0.0219 0.8942 0.0154
RP 0.7617 0.0213 0.9059 0.0137
SCG 0.7510 0.0221 0.8932 0.0155

According to obtained results Levenberge-Marquardt had the best performance among 
other algorithms. Levenberg-Marquardt algorithm is specifically designed to minimize 
sum-of error function, of the form.

E = = ||e||2                     (2) 

Where ek is the error in the kth exemplar or pattern and e is a vector with element ek . if 
the difference between the pervious weight vector and the new weight vector is small, 
the error vector can be expanded to first order by means of Taylor series.

e (i+j)= e(j) + ek/ wi(w(j+1)-w(j))                                                 (3)    

As a consequence, the error function can be expressed as

E= || e(j) + ek/ wi(w(j+1)-w(j))||2 (4)                                                                       
Minimizing the error function with respect to the new weight vector, gives

w (j+1) = w(j) - ZTe(j)                                                                                      (5)
                                                                                                      

where (Z)ki = ek/ wi                                                                                                                                                 (6)
Since the hessian for the sum-of-square error function is

(H)ij = 2E/ wi wj = ∑ (7)

Porosity Water Saturation
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other algorithms. Levenberg-Marquardt algorithm is specifically designed to minimize 
sum-of error function, of the form.

E = = ||e||2                     (2) 

Where ek is the error in the kth exemplar or pattern and e is a vector with element ek . if 
the difference between the pervious weight vector and the new weight vector is small, 
the error vector can be expanded to first order by means of Taylor series.

e (i+j)= e(j) + ek/ wi(w(j+1)-w(j))                                                 (3)    

As a consequence, the error function can be expressed as

E= || e(j) + ek/ wi(w(j+1)-w(j))||2 (4)                                                                       
Minimizing the error function with respect to the new weight vector, gives
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where (Z)ki = ek/ wi                                                                                                                                                 (6)
Since the hessian for the sum-of-square error function is

(H)ij = 2E/ wi wj = ∑ (7)
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Since the hessian for the sum-of-square error function is
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the batch mode all of the inputs are applied to the network before the weights are 
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LM 0.8011 0.0182 0.9264 0.0095
OSS 0.7528 0.0219 0.8942 0.0154
RP 0.7617 0.0213 0.9059 0.0137
SCG 0.7510 0.0221 0.8932 0.0155

According to obtained results Levenberge-Marquardt had the best performance among 
other algorithms. Levenberg-Marquardt algorithm is specifically designed to minimize 
sum-of error function, of the form.

E = = ||e||2                     (2) 

Where ek is the error in the kth exemplar or pattern and e is a vector with element ek . if 
the difference between the pervious weight vector and the new weight vector is small, 
the error vector can be expanded to first order by means of Taylor series.

e (i+j)= e(j) + ek/ wi(w(j+1)-w(j))                                                 (3)    

As a consequence, the error function can be expressed as

E= || e(j) + ek/ wi(w(j+1)-w(j))||2 (4)                                                                       
Minimizing the error function with respect to the new weight vector, gives

w (j+1) = w(j) - ZTe(j)                                                                                      (5)
                                                                                                      

where (Z)ki = ek/ wi                                                                                                                                                 (6)
Since the hessian for the sum-of-square error function is

(H)ij = 2E/ wi wj = ∑ (7)

Porosity Water Saturation

Neglecting the weights, therefore, involves the inverse Hessian or 
an approximation thereof for nonlinear networks. The Hessian is 
relatively easy to compute, since it is based on first order derivatives 
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with respect to the network weights that are easily accommodated by 
back propagation. Although the updating formula could be applied 
iteratively to minimize the error function, this may result in a large 
step size, which would invalidate the linear approximation on which 
the formula is based.

In the Levenberg-Marquardt algorithm, the error function is minimized, 
which the step size is kept small in order to ensure the validity of the 
linear approximation. This is accomplished by use of a modified error 
function of the form:

Neglecting the weights, therefore, involves the inverse Hessian or an approximation 
thereof for nonlinear networks. The Hessian is relatively easy to compute, since it is 
based on first order derivatives with respect to the network weights that are easily 
accommodated by back propagation. Although the updating formula could be applied 
iteratively to minimize the error function, this may result in a large step size, which 
would invalidate the linear approximation on which the formula is based.

In the Levenberg-Marquardt algorithm, the error function is minimized, which the step 
size is kept small in order to ensure the validity of the linear approximation. This is 
accomplished by use of a modified error function of the form:

E= || e(j) + ek/ wi(w(j+1)-w(j))||2 +λ||w(j+1)-w(j)||2 (8)  

Where λ is a parameter governing the step size. Minimizing the modified error with 
respect to w(j+1) gives

w (j+1) = w(j) - ZTe(j)          (9)

Very large values of λ amount to standard gradient descent, while very small values λ of 
amount to the Newton method (Sapna et al., 2012).

For selecting optimum neurons in the hidden layer, the network should be trained with 
different neurons while other parameters should be constant. After operating different 
neurons in the hidden layer, the network with twenty two and twenty five neurons were 
selected for porosity and water saturation respectively regarding to high correlation and 
minimum mean square error. The final regression between real value and predicted 
porosity and water saturation is depicted in Figure 2.

Figure 2. Correlation between output value and predicted value for porosity (left)                                                  
and water saturation (right)
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amount to the Newton method (Sapna et al., 2012).

For selecting optimum neurons in the hidden layer, the network should be trained with 
different neurons while other parameters should be constant. After operating different 
neurons in the hidden layer, the network with twenty two and twenty five neurons were 
selected for porosity and water saturation respectively regarding to high correlation and 
minimum mean square error. The final regression between real value and predicted 
porosity and water saturation is depicted in Figure 2.

Figure 2. Correlation between output value and predicted value for porosity (left)                                                  
and water saturation (right)

Very large values of λ amount to standard gradient descent, while very 
small values λ of amount to the Newton method (Sapna et al., 2012).

For selecting optimum neurons in the hidden layer, the network should 
be trained with different neurons while other parameters should be 
constant. After operating different neurons in the hidden layer, the 
network with twenty two and twenty five neurons were selected for 
porosity and water saturation respectively regarding to high correlation 
and minimum mean square error. The final regression between real 
value and predicted porosity and water saturation is depicted in Figure 
2. 
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accommodated by back propagation. Although the updating formula could be applied 
iteratively to minimize the error function, this may result in a large step size, which 
would invalidate the linear approximation on which the formula is based.

In the Levenberg-Marquardt algorithm, the error function is minimized, which the step 
size is kept small in order to ensure the validity of the linear approximation. This is 
accomplished by use of a modified error function of the form:

E= || e(j) + ek/ wi(w(j+1)-w(j))||2 +λ||w(j+1)-w(j)||2 (8)  

Where λ is a parameter governing the step size. Minimizing the modified error with 
respect to w(j+1) gives

w (j+1) = w(j) - ZTe(j)          (9)

Very large values of λ amount to standard gradient descent, while very small values λ of 
amount to the Newton method (Sapna et al., 2012).

For selecting optimum neurons in the hidden layer, the network should be trained with 
different neurons while other parameters should be constant. After operating different 
neurons in the hidden layer, the network with twenty two and twenty five neurons were 
selected for porosity and water saturation respectively regarding to high correlation and 
minimum mean square error. The final regression between real value and predicted 
porosity and water saturation is depicted in Figure 2.

Figure 2. Correlation between output value and predicted value for porosity (left)                                                  
and water saturation (right)Figure 2. Correlation between output value and predicted value for 

porosity (left) and water saturation (right)



ISSN: 2180-3811        Vol. 5     No. 2    July - December 2014

Water Saturation and Porosity Prediction using Back-Propagation Artificial Neural Network (BPANN) 
From Well Log Data

7

3.0 CONCLUSION

Porosity and water saturation for three wells in one of the Iranian oil 
fields were predicted using artificial neural network. Thirteen training 
functions were used to determine which one has better performance. 
After training with constant neurons in the hidden layer, Levenberge-
Marquardt had a best performance for both porosity and water 
saturation. Training network with optimum neurons in the hidden 
layer for porosity and water saturation were 22 and 25 respectively. 
The correlation coefficient between real output and predicted outputs 
for porosity and water saturation were 0.82 and 0.93 respectively. 
The obtained results indicates that the artificial neural network with 
Levenberge-Marquardt Back-propagation algorithm had a reliable 
ability to predict porosity and water saturation of oil and natural gas 
reservoirs.
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