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ABSTRACT

Mathematics is a beautiful subject with logic applications. However, 
the most common gene vectors used are virus based (viral gene vectors). 
These possess high immunological risk, so a non-viral gene vector maybe 
preferable. Nanocrystalline hydroxyapatite, HAp [Ca10(PO4)6(OH)2] 
is an example of a possible non-viral gene vector. This is due to its good 
biocompatibility, bioactivity and proven results as a non-viral gene vector.
The HAp particles produced in this study was by the sol-gel method 
and the processing conditions were varied in terms of the processing 
temperatures (20oC, 30oC or 40oC) and the stirring rates (200 rpm, 400 
rpm or 600 rpm). The particles formed from all of the processing conditions 
were systematically characterized and compared to each other. The 
characterizations performed were FTIR, for identifying functional groups, 
XRD for phase composition, crystallinity and particle size estimation 
(by applying Scherrer’s formula) and SEM for surface morphology.The 
characterizations data obtained showed that the functional groups, phase 
composition, crystallinity and surface morphology were similar for all of 
the samples, the only difference being on the calculated particle size. It also 
showed that, at a lower processing temperature and higher stirring rate, 
smaller particle sizes were formed.
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1.0 introdUCtion

Calcium phosphates are of interest for many biomedical applications 
due to their good biocompability and bioactivity (Figure 1). 
Hydroxyapatite (HAp) has been used as implant coating (Sun et al., 
2001) and substitutes (Ramay & Zhang, 2004). Also, calcium phosphate 
nanoparticles have a range of applications in a number of fields, 
such as drug delivery, gene therapy (Figure 2), bone cements, dental 
applications, chromatography and waste water remediation. Each 
application has a need for the nanoparticles to be of a particular size 
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range. There are various techniques reported in the literature for the 
production of nanosized calcium phosphate particles. These include 
wet chemical precipitation (Degirmenbasi et al., 2006), sol-gel synthesis 
(Kalita & Bhatt, 2007), hydrothermal synthesis (Pushpakanth et al., 
2008), mechano-chemical synthesis (Wang et al., 2002) and several 
other methods by which nanoparticle of various shapes and sizes can 
be obtained.

Amorphous calcium phosphate (ACP) are used as remineralisation 
agents both in-situ (Tung et al., 1997) and in tooth restorative materials 
(Skrtic et al., 2004). Dicalcium phosphate anhydrous (DCPA) and 
dicalcium phosphate dehydrate (DCPD) (Brown & Chow, 1986), 
octacalcium phosphate (OCP) (Bermudez et al., 1994) and other calcium 
phosphate compounds (Mejdoubi et al., 1994; Ginebra et al., 1997; Lee et 
al., 1999) are used either as components or form as products of calcium 
phosphate bone cements. 

 
 

 

 
 
Figure 1.  Schematic model of an affinity binding between a nHAp crystal and DNA (L. Sun et al., 2001) 
 
 
 

 
 

Figure 2.  Mechanism of cellular uptake of non-viral gene vectors (via endocytosis) 
 
Previous studies on nano-calcium phosphates have focused almost exclusively on nano-
HAp, primarily because it is considered as a prototype of bioapatites, which are in nano-
crystalline forms (LeGeros, 1991). Most of these preparations were done in a solution 
environment, such as chemical precipitation (Tas, 2000), sol-gel (Chai et al., 1999; 
Layrolle et al., 1998), microemulsion (Bose et al., 2003; Lim, 1999), electro-deposition 
(Shirkhanzadeh, 1998), and mechanochemical preparation followed by hydrothermal 
treatment (Suchanek et al., 2004). These methods generally can be used for preparing 
nano-HAp only because HAp is the least soluble calcium phosphate under most solution 
conditions; hence it is the phase that would form exclusively (Dorozhkin, 2007). 
Nanoparticles of the more soluble calcium phosphate phases, such as monocalcium 
phosphate monohydrate (MCPM), dicalcium phosphate monohydrate (DCPA), 
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Previous studies on nano-calcium phosphates have focused almost 
exclusively on nano-HAp, primarily because it is considered as a 
prototype of bioapatites, which are in nano-crystalline forms (LeGeros, 
1991). Most of these preparations were done in a solution environment, 
such as chemical precipitation (Tas, 2000), sol-gel (Chai et al., 1999; 
Layrolle et al., 1998), microemulsion (Bose et al., 2003; Lim, 1999), 
electro-deposition (Shirkhanzadeh, 1998), and mechanochemical 
preparation followed by hydrothermal treatment (Suchanek et al., 
2004). These methods generally can be used for preparing nano-HAp 
only because HAp is the least soluble calcium phosphate under most 
solution conditions; hence it is the phase that would form exclusively 
(Dorozhkin, 2007). Nanoparticles of the more soluble calcium phosphate 
phases, such as monocalcium phosphate monohydrate (MCPM), 
dicalcium phosphate monohydrate (DCPA), dicalcium phosphate 
dehydrate (DCPD), octacalcium phosphate (OCP), and amorphous 
calcium phosphate (ACP) have not been prepared by these methods.

The technique of calcium phosphate co-precipitation with plasmid 
DNA (pDNA) for in vitro transfection is used as a routine laboratory 
procedure (James & Grosveld, 1987). This method relies heavily 
on the fact that divalent metal cations, such as Ca2+, Mg2+, Mn2+, and 
Ba2+ can form ionic complexes with the helical phosphates of DNA 
(Bloomfield, 1997; Truong-Le, 1999). Calcium phosphate can therefore 
form complexes with the nucleic acid backbone and thus may impart 
a stabilising function to certain DNA structures. DNA is reported to 
bind with HAp particles by the strong affinity between the phosphate 
groups of the DNA, which are negatively charged and the calcium 
ions of HAp (Okazaki et al., 2001). Calcium has a small hydrodynamic 
radius and therefore a high charge-to-surface area (Kulkarni et al., 
2006). The complexes can then be carried across cell membrane via ion 
channel mediated endocytosis (Truong-Le et al., 1999). The specificity 
of calcium over other divalent metals is because it not only effectively 
condenses DNA, but does it in such a way that it is still functional 
following successful delivery to the cell nucleus, which is a result of 
Coulombic interactions (Walters & Welsh, 1999). Calcium phosphate 
has been used to effectively transfect bone tissue in vivo recently 
(Kuroda et al., 2005 & Endo et al., 2006).
 
Specific characteristics of particles (size, shape, surface, crystal structure 
and morphology) are among the important factors needed to control 
technological and biopharmaceutical properties of drug products. In 
general, morphology (crystal habit) can influence the physical and 
chemistry stability of solid dosage forms, a narrow size distribution 
is important to obtain content uniformity, while spherical particles 
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allow good flowability and tablettability. Furthermore, micronisation 
increases the surface area with a consequent increase of dissolution 
rate and bioavailability of the drug, thus promoting the formulation of 
active principle ingredients which may be insoluble or slightly soluble 
in aqueous media.

2.0 experimental method

A stoichiometric amount of aqueous solution of calcium nitrate 
tetrahydrate [Ca(NO3)2.4H2O] was used and mixed with aqueous 
solution of ammonium phosphate [(NH4)3PO4] with the molar ratio 
of 10:6 by using a peristaltic pump into a stirred beaker. This Ca/P 
molar ratio is the desired Ca/P ratio as observed in HAp. In mixing 
step, the processing conditions were varied in terms of the processing 
temperatures    (20oC, 30oC or 40oC) and the stirring rates (200 rpm, 400 
rpm or 600 rpm). The concentrations of both precursors, which were 
the calcium nitrate tetrahydrate and ammonium phosphate and also 
stirring duration were constant. Then, in filtration step, HAp particles 
were filtered using a 0.22 μm filters. The filtered samples were then 
dried at a temperature of 100oC and the drying step was carried out 
for 24 hour. Lastly, the dried samples were crushed using a pastle and 
mortar apparatus for 5 minutes. The procedure for the production of 
nanoparticles is outlined in Figure 3.

The particles formed from all of the processing conditions were 
systematically characterized and compared to each other. The 
characterizations performed were FTIR, for identifying functional 
groups, XRD for phase composition, crystallinity and particle size 
estimation (by applying Scherrer’s formula) and SEM for surface 
morphology.

In the post co-precipitation of HAp particles from the sol-gel technique, 
the concentration of pDNA used was 50 mg/L. 10 μg (2μl) of pDNA 
from a stock solution of 5 g/L was dissolved in 198 μl of TE-CaCl2 buffer 
(Tris-EDTA), giving a final volume of 200 μl. This solution was then 
mixed with 150 μg of HAp samples for each, which was vortexed for 
15 seconds. The HAp-pDNA complex was incubated for 10 minutes 
at room temperature. Each post co-precipitation attachment of pDNA 
was repeated for 6 times.

In the gel electrophoresis procedure, Tris/Borate/EDTA (TBE), the 
running buffer for separating the pDNA was used. This buffer contained 
a mixture of 90 mM Tris, 90 mM boric acid and 2 mM EDTA at pH 8, 
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which was made up a 5x concentration stock. The running buffer of 
0.5x was prepared by diluting 100 ml of the 5x concentration stock into 
a 1 L volumetric flask with distilled water (dH2O). 1% agarose matrix 
was prepared by dissolving 1 gram of agarose Type II powder in 100 
ml of 1x TBE buffer and the agarose solution was poured into the gel 
rack container. The wells/slots were prepared by inserting a comb at 
one side of the agarose matrix, located about 5 - 10 mm from the end of 
the gel rack container. The agarose matrix was let to set for 30 minutes. 
Once it became solid, it was put into the electrophoresis tank, and 0.5x 
TBE running buffer (500 ml) was poured until the agarose matrix was 
completely submerged under the running buffer solution. 
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Figure 3.  Flow chart of the sol-gel synthesis of hydroxyapatite powder

The wells were then filled with pDNA loaded HAp samples and pDNA 
marker was filled at the first well as reference of the pDNA molecular 
weight size. The electrophoresis measurements were undertaken at 
75 volt (V) for 1 hour. When the electrophoresis measurement has 
stopped, the gel matrix was transferred into a container and ethidium 
bromide was poured to stain the pDNA for 45 minutes. The gel was 
washed several times with distilled water. Lastly, the gel was placed in 
an Ultraviolet Transilluminator device and images were taken using 
the Kodak UV Imagersoftware.
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In-vitro transfection studies of hydroxyapatite – plasmid DNA (HAp-
pDNA) post co-precipitation on two cell cultures, the NIH/3T3 
fibroblasts and MC3T3 osteoblasts are also carried out. This transfection 
investigation was carried out as to evaluate the effectiveness of the 
HAp-pDNA complexes as pDNA carrier into the cells.

3.0 resUlts & disCUssion

Phosphate and hydroxide absorption peaks for HAp were seen in the 
FTIR spectra (Figure 4). The formation of hydroxyapatite was denoted 
by the broad phosphate band centered from about 1000 to 1100 cm-1 

(Varma & Babu, 2005) with bands at 960 to 965 cm-1 and 565 to 601 cm-1, 
which corresponded to the PO43- ion (Kawata et al., 2004; Miyaji et al., 
2005). Major peaks for the phosphate group were between 1100 cm-1 to 
960 cm-1 and 601 cm-1 to 567 cm-1.
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Figure 4. The FTIR spectra for hydroxyapatite samples prepared at 200, 400, 600 rpm and 30 oC 

 

The bands assigned to the stretching modes of hydroxyl groups in hydroxyapatite were 
seen at 1800 cm-1, 632 cm-1 and 474 cm-1 (Varma et al., 2005; Kawata et al., 2004). The 
stretching modes of the carbonyl from the carbonate groups have been reported to be at 
1550 cm-1, 1457 cm-1 and 880 cm-1 for type A substitution, and 1462 cm-1, 1418 cm-1 
and 876 cm-1 for type B substitution (Krajewski et al., 2005). The hydroxyapatite 
formed in this study was type B substitution, whereby carbonate ions substituted some 
of the phosphate ions in the apatitic structure. The source of carbonate would have 
originated from CO2 in the atmosphere. The presence of type B carbonate in the apatite 
lattice has been shown to cause an increase in solubility both in vitro and in vivo tests 
(Krajewski et al., 2005). The FTIR spectra obtained for all of the HAp samples showed 
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400, 600 rpm and 30oC

The bands assigned to the stretching modes of hydroxyl groups in 
hydroxyapatite were seen at 1800 cm-1, 632 cm-1 and 474 cm-1 (Varma 
et al., 2005; Kawata et al., 2004). The stretching modes of the carbonyl 
from the carbonate groups have been reported to be at 1550 cm-1, 
1457 cm-1 and 880 cm-1 for type A substitution, and 1462 cm-1, 1418 
cm-1 and 876 cm-1 for type B substitution (Krajewski et al., 2005). The 
hydroxyapatite formed in this study was type B substitution, where by 
carbonate ions substituted some of the phosphate ions in the apatitic 
structure. The source of carbonate would have originated from CO2 
in the atmosphere. The presence of type B carbonate in the apatite 
lattice has been shown to cause an increase in solubility both in vitro 
and in vivo tests (Krajewski et al., 2005). The FTIR spectra obtained for 
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all of the HAp samples showed that they are all the same, whereby 
processing conditions does not effect on particle composition.

The formation of hydroxyapatite was indicated by the characteristic 
peak occurring at 2θ = 31.8o which appeared on all of the HAp samples 
(Shimbayashi et al., 1995) and was verified by the pattern for HAp 
from the JCPDS catalogue. The narrow peaks in the XRD spectra 
indicate a high degree of crystallinity in the hydroxyapatite particles. 
After sintering at 600oC, no other phase besides hydroxyapatite was 
identified. The XRD patterns obtained for all of the HAp samples 
showed that they are all the same, whereby processing conditions does 
not effect on the resultant phase (Figure 5).
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Particle size estimations by applying Scherrer’s formula were shown to be in the 
nanosized range. SEM images of HAp nanoparticles showed that the particles formed 
agglomerates of approximately < 1 to 5 μm (Figure 6). 
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Particle size estimations by applying Scherrer’s formula were shown to 
be in the nanosized range. SEM images of HAp nanoparticles showed 
that the particles formed agglomerates of approximately < 1 to 5 μm 
(Figure 6).
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Figure 6.  The SEM images for hydroxyapatite samples prepared at 200 & 600 rpm and 20 & 30oC 
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particles by the bands on the gel. These are clearly shown in Figure 7. The pDNA 
molecular weight used in these studies can be determined from the pDNA standard 
molecular weight ladder (shown on Lane 1). The molecular weight of the pDNA used is 
5757 base pair (5.7 kb) shown by the position of the last strip of the band (representing 
the open circular pDNA), which is located between the 5 kb and 6 kb of the standard 
pDNA ladder. Many previous studies by other groups have showed the efficiency of 
post co-precipitation, for example James et al. (1987) (James et al., 1987), Truong-Le 
(1999) and Elliott (1994) and Jordan et al. (1996) reported that HAp-pDNA co-
precipitates can arise spontaneously in supersaturated solutions, but only in a narrow 
range of physico-chemical conditions, with principally the calcium and phosphate 
concentrations being the most significant.  
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Transfection was detected by fluorescence microscopy after the 
incubation of the NIH/3T3 fibroblast and MC3T3 osteoblast cell lines 
with the HAp-pDNA complexes. From the GFP expression observed 
by the fluoresence microscopy, it was noted that all of the HAp-pDNA 
complexes were taken up by both cell lines and the gWiz-GFP pDNA 
mammalian expression vector encoding green fluorescent protein 
fluoresced under the fluorescence microscope. The fluorescence light 
micrographs of some of the transfected CaP-pDNA complexes in the 
NIH/3T3 fibroblast and MC3T3 osteoblast cell lines are shown in Figure 
8. The green fluorescence indicates the pDNA uptake by the cells and 
subsequently the GFP expression.
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4.0 CONCLUSION 
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4.0 ConClUsion

The characterizations data obtained showed that the functional groups, 
phase composition, crystallinity and surface morphology were similar 
for all of the samples, the only difference being on the calculated particle 
size. It also showed that, at a lower processing temperature and higher 
stirring rate, smaller particle sizes were formed. 

The HAp-pDNA complexes were shown to be a reliable transfection 
vector in both the NIH/3T3 fibroblast and MC3T3 osteoblast cell lines. 
The HAp-pDNA complexes were readily taken up by the cells as shown 
by the fluorescence light micrographs.
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