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ABSTRACT

First part of this paper presents an all-optical switching OCDMA testbed 
investigation under the influence of the residual chromatic dispersion 
resulted from different locations of the receiving terminal. The investigation 
was carried out using incoherent 2D-WH/TS OCDMA codes based on 
picosecond pulses at OC-48 (2.5Gb/s) data rate. The testbed itself is based on 
a fully chromatic dispersion compensated (with sub-picosecond accuracy) 
17 km bidirectional fiber link connecting University of Strathclyde and 
Glasgow University. We have found that a high performance penalty in the 
form of BER deterioration was incurred when even a relatively short length 
of optical fiber was added to a fully compensated transmission link in order 
to relocate the receiving terminal (we tested increments up to 275m of SMF-
28). Second part of this paper reports on the testbed performance when an 
OCDMA receiver with built in all-optical clock recovery was implemented 
to mitigate the detrimental effects of the link timing jitter on the picosecond 
switching based all-optical time gate.
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1.0 IntroDuctIon

Optical Code Division Multiple Access (OCDMA) technology 
offers capabilities which enable multiple users to share bandwidth 
simultaneously and access network resources asynchronously. The 
potential to enhance privacy and information security, improve spectral 
efficiency, flexibility and high scalability (Bres, Glesk & Prucnal, 2005), 
(Bres et al., 2007) makes the OCDMA an attractive and promising 
technique for next generation networking applications (Nishimura, 
2005). Different approaches of coherent and incoherent OCDMA 
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have been extensively investigated (Agrawal, 2001), (Bres et al., 2007), 
(Wang & Kitayama, 2004), (Osadola et al, 2011) with lots of attention 
geared towards developing various coding schemes (Yang & Kwong, 
2002). The use of 2-dimensional wavelength-hopping/time-spreading 
(2D-WH/TS) family of codes has been widely researched for possible 
use in different future OCDMA applications (Huang et al., 2007). 
These codes are characterized by the combination of time spreading 
and wavelength hopping of picosecond pulse patterns which spreads 
optical pulses in both the time and wavelength domain simultaneously 
thus achieving code flexibility as well as better performance (Jyoti & 
Kaler, 2010), (Osadola, et al., 2012). Among the advantages are including 
reduced cross correlation, increased cardinality and nonexistence of 
autocorrelation side lobes (Dang, Pham & Cheng, 2009), (Minato et al., 
2005). Widely studied has been the family of prime codes (Dang, Pham 
& Cheng, 2009), (Prucnal, 2005) employing multiwavelength short 
pulses for codes generation. 
 
However, the result of broad spectrum of short optical pulses and when 
considering the different propagation speed of each spectral component, 
the multi wavelength pulses within the OCDMA code start to broaden 
as the result of propagation in a dispersive medium (Chua, 2002), 
(Yang et al., 2008). In 2D-WH/TS codes that utilize short picosecond 
pulses for code generation, the effect of chromatic dispersion will be 
very severe especially because the relative broadening due to fiber 
chromatic dispersion (Prucnal, 2005), (Ng, Weichenberg & Sargent, 
2002), (Osadola et al., 2013) can become of the order of the pulsewidth 
even after relatively short propagation distance in a single mode 
optical fiber. It is in view of these that makes controlling chromatic 
dispersion one of the key factors for preventing significant degradation 
in OCDMA. To our knowledge not much of study has been done in 
terms of learning the extent to which small or even residual amount 
of chromatic dispersion in transmission link can affect performance of 
OCDMA systems that utilize multiwavelength picosecond pulses for 
2D-WH/TS code creation. In communications systems, there is always 
a need to extend the reach of the existing fiber link or to relocate the 
user terminals. In the event of this, a simple addition of extra length of 
fiber would mean also adding some amount of dispersion. Therefore, it 
is necessary to understand how chromatic dispersion accumulated via 
fiber link extensions (say up to few hundreds of meters of SMF-28) may 
affect the overall OCDMA system performance. 

Beside the chromatic dispersion impairments, the performance is also 
influenced by the timing jitter. This is even more true for the coding 
sheme using 2D-WH/TS OCDMA codes with multicolor ps pulses 
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(Osadola et al., 2013). The effect of the timing can be mitigated by using 
a self-synchronize OCDMA receiver with built-in all-optical clock 
recovery (Idris, Osadola & Glesk, 2012). 

In this paper we report results of our performance investigation of 
the 17 km long bidirectional OCDMA fiber optic testbed connecting 
University of Strathclyde and Glasgow University under the influence 
of relatively small deviations from its fully chromatic dispersion 
compensation due to its terminal relocations. The investigations 
are carried out using incoherent 2D-WH/TS OCDMA codes based 
on picosecond pulses at OC-48 (2.5Gb/s) bit rate. Second part of this 
paper reports on performance improvements in the system when the 
OCDMA receiver is equip with a build-in all-optical clock recovery in 
order to mitigate the detrimental effects of the timing jitter on a time 
gate during a picosecond all-optical switching operation. 

2.0 bacKgrounD

2.1       chromatic dispersion

Chromatic dispersion occurs as result of the fact that the different 
spectral components of the optical pulse travel in fiber at slightly 
different group velocities. The frequency dependence of the group 
velocity leads to a pulse broadening because different spectral 
components of the pulse will disperse during propagation in optical 
fiber and do not arrive simultaneously. For pulse propagation distance 
L in a SMF, if ∆ω is pulse spectral width and vg is the group velocity, the 
extent of pulse broadening can be written (Agrawal, 2002)
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 is called a dispersion parameter and is expressed in and varies with the 

wavelength. 
 
2.2 All-optical clock recovery for timing jitter supression and optical switching 

control 
 
Transmitted optical signals at high data rates over longer distances often suffer from 
timing jitter. This leads to problems with a receiver synchronization resulting in BER 
degradation. Accurate and “dynamic” synchronization of the receiver is therefore 
needed to improve signal detection to ensure that the OCDMA receiver is as little as 
possible affected by the timing jitter. A clock recovery for the receiver synchronization 
is a well-known approach for suppressing detrimental effects of timing jitter on the 
quality of received data. Clock recovery subsystems have been recognized as very 
essential for high speed detection systems (Prucnal, 2005), (Lerber et al., 2009). 
Implementations of wide variety of clock extraction techniques for use in receiver 
synchronization were predominantly developed for wavelength division multiplexing 
(WDM) (Vlachos, 2000), (Su et al., 2000) and optical time division multiplexing 
(OTDM) (Lui et al., 2008), (Zhang et al., 2010) systems. However, their application in 
OCDMA which uses picosecond pulses is limited or often impossible. Clock and data 
recovery techniques for such OCDMA systems were reported by (Deng et al., 2009), 
(Faucher et al., 2005). However, these approaches were not implemented all-optically 
and can not be used for all-optical data post-processing. Optical clock extraction was 
demonstrated by using a nonlinear optical loop mirror (NOLM) and terahertz optical 
asymmetric multiplexer (TOAD) (Kravtsov, 2009), (Sokoloff et al., 1993), respectively. 
However, a practical realization of a suitable all-optical clock recovery circuit which 
will generate optical clock signal from the incoming OCDMA data stream without any 
intermediate electronic stage is not a simple task. Recovering an optical clock from 
incoming data at a given bit rate means extracting a periodic signal with period 
reciprocal of the bit rate, while keeping it free of information carried by data and 
without the phase noise. Such optical signal can be then used to control an all-optical 
picosecond switch or time gate for its precise timing control to open and close its 
switching windows. A variety of high speed all-optical switching devices based on 
semiconductor optical amplifiers (SOA) (Nakamura, Ueno & Tajima, 2002), 
(Bakopoulos et al., 2005), (Minh, Gbassemlooy & Ng, 2006) or based on nano-wire/ 
sub-wavelength Mach-Zehnder interferometric (MZI) waveguide structures (Glesk et 
al., 2011) were reported and successfully demonstrated. The operation of 
interferometric switches is straightforward and requires optical picosecond clock pulses 

where β2(ps2⁄(km)) is called group velocity dispersion parameter (GVD) 
(Agrawal, 2001). By substituting  
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D is called a dispersion parameter and is expressed in ps/km-nm and 
varies with the wavelength.
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2.2	 All-optical	clock	recovery	for	timing	jitter	supression		
 and optical switching control

Transmitted optical signals at high data rates over longer distances 
often suffer from timing jitter. This leads to problems with a receiver 
synchronization resulting in BER degradation. Accurate and 
“dynamic” synchronization of the receiver is therefore needed to 
improve signal detection to ensure that the OCDMA receiver is as 
little as possible affected by the timing jitter. A clock recovery for the 
receiver synchronization is a well-known approach for suppressing 
detrimental effects of timing jitter on the quality of received data. 
Clock recovery subsystems have been recognized as very essential 
for high speed detection systems (Prucnal, 2005), (Lerber et al., 2009). 
Implementations of wide variety of clock extraction techniques for 
use in receiver synchronization were predominantly developed for 
wavelength division multiplexing (WDM) (Vlachos, 2000), (Su et al., 
2000) and optical time division multiplexing (OTDM) (Lui et al., 2008), 
(Zhang et al., 2010) systems. However, their application in OCDMA 
which uses picosecond pulses is limited or often impossible. Clock and 
data recovery techniques for such OCDMA systems were reported by 
(Deng et al., 2009), (Faucher et al., 2005). However, these approaches 
were not implemented all-optically and can not be used for all-optical 
data post-processing. Optical clock extraction was demonstrated by 
using a nonlinear optical loop mirror (NOLM) and terahertz optical 
asymmetric multiplexer (TOAD) (Kravtsov, 2009), (Sokoloff et al., 
1993), respectively. However, a practical realization of a suitable all-
optical clock recovery circuit which will generate optical clock signal 
from the incoming OCDMA data stream without any intermediate 
electronic stage is not a simple task. Recovering an optical clock 
from incoming data at a given bit rate means extracting a periodic 
signal with period reciprocal of the bit rate, while keeping it free of 
information carried by data and without the phase noise. Such optical 
signal can be then used to control an all-optical picosecond switch or 
time gate for its precise timing control to open and close its switching 
windows. A variety of high speed all-optical switching devices based 
on semiconductor optical amplifiers (SOA) (Nakamura, Ueno & Tajima, 
2002), (Bakopoulos et al., 2005), (Minh, Gbassemlooy & Ng, 2006) or 
based on nano-wire/ sub-wavelength Mach-Zehnder interferometric 
(MZI) waveguide structures (Glesk et al., 2011) were reported and 
successfully demonstrated. The operation of interferometric switches is 
straightforward and requires optical picosecond clock pulses to control 
their operation. Conceptually, the switching is achieved by optically 
inducing a relative differential phase shifts between both MZ arms. The 
carrier dynamics enables these switches to operate at ultra-high data 
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rates well beyond the speed of the current electronics. In order to avoid 
possible timing jitter impairments on the switching performance of 
these all-optical gates the optical clock should be preferably recovered 
from the incoming data stream.

3.0 eXperIMental result

Before our investigations, the 17 km bidirectional fiber optic testbed 
between University of Strathclyde and Glasgow University was 
compensated for chromatic dispersion (see Figure 1). We used a fiber 
based chromatic dispersion compensation (CDC) technique. 
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dispersion on a single laser pulse

First a commercially available CDC module was applied. Then fine 
tuning of the entire fiber link was performed to achieve sub-picosecond 
compensation accuracy for the spectral region which is used by the 
2D-WH/TS OCDMA codes based on multiwavelength picosecond 
pulses. Figure 1 illustrates the experimental setup we used to verify 
the accuracy of our CDC and also to measure the residual chromatic 
dispersion (CD) of the entire link due to its length changes resulted 
from moving the receiving terminal to its future locations. First 
from OTDR measurements we estimated the link length between the 
transmitting modelocked laser (MLL) and point A to be 17 km (Figure 
1). Then we compared the output pulse width from the MLL before 
and after its propagation inside the 17 km long CD compensated fiber 
link. The laser pulse was monitored using an (Agilent 86105B digital 
communications analyzer) with 60GHz oscilloscope, optical spectrum 
analyzer (Agilent 86146B) and an optical autocorrelator. Figure 2(a) and 
(b) shows the temporal traces of the outgoing and the received laser 
pulse, respectively measured by optical autocorrelator (Femtochrome). 
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The outgoing laser pulse width was 2 ps full wave at half maximum 
(FWHM), and the received pulse after propagation in the 17 km long 
CD compensated transmission link in Figure 1 was 2.2 ps. By comparing 
both results it was found 0.2 ps broadening which is 10% of FWHM 
value for the outgoing pulse.
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To demonstrate how severely deviation from the link with full CDC can affect this 2 ps 
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results are summarized in Figure 3. Here for example we can see that extending the 17 
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275 m of SMF-28 will lead to 250% pulse broadening. Obtained experimental results 
are in good agreement with the simulated values (see dotted line in Figure 3). It should 
be noted that before different sections of SMF-28 fiber were added the laser pulsewidth 
in this experiment was 2.2 ps FWHM as can be seen in Figure 2. 
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Similarly, we verified the effect of the fiber link on the propagation of a single 2D-
WH/TS OCDMA code which is based on multiwavelength picosecond pulses. The 
experimental setup is shown in Figure 4. We used 2D-(4,50) WH/TS family of 
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nm, λ3 = 1552.52 nm, λ4= 1550.12 nm which were placed accordingly within 50 time 
chips with duration of 8 ps. The sequence is as follows: 1-λ3, 9-λ2, 28-λ4, and 31-λ1 (see 
Figure 5). The numbering indicates the chip’s order. The code length was 400 ps and 
corresponds to the data transmission rate of OC-48 (2.5G bp/s).  
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To demonstrate how severely deviation from the link with full CDC can 
affect this 2 ps optical pulse due to terminal relocation we conducted 
additional experiments. Obtained results are summarized in Figure 
3. Here for example we can see that extending the 17 km long fully 
CD compensated link (in order to move the terminal by 275 m) by 
adding 275 m of SMF-28 will lead to 250% pulse broadening. Obtained 
experimental results are in good agreement with the simulated values 
(see dotted line in Figure 3). It should be noted that before different 
sections of SMF-28 fiber were added the laser pulsewidth in this 
experiment was 2.2 ps FWHM as can be seen in Figure 2.
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Similarly, we verified the effect of the fiber link on the propagation of 
a single 2D-WH/TS OCDMA code which is based on multiwavelength 
picosecond pulses. The experimental setup is shown in Figure 4. We 
used 2D-(4,50) WH/TS family of OCDMA codes represented by four 
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wavelength pulses λ1 = 1551.72 nm, λ2 =1550.92 nm, λ3 = 1552.52 nm, 
λ4= 1550.12 nm which were placed accordingly within 50 time chips 
with duration of 8 ps. The sequence is as follows: 1-λ3, 9-λ2, 28-λ4, and 
31-λ1 (see Figure 5). The numbering indicates the chip’s order. The code 
length was 400 ps and corresponds to the data transmission rate of OC-
48 (2.5G bp/s). 

 

 
 

 
 

Figure 4. Experimental setup to evaluate impact of chromatic dispersion on 2D WH/TS OCDMA code 
 
 

 
Figure 5. 2D (4, 50) Wavelength-Hopping/Time-Spreading code (1-λ3, 9-λ2, 28-λ4, and 31-λ1), as seen on 

a bandwidth limited oscilloscope 
 
Our measurement results are shown in Figure 6(a) and (b) and depict autocorrelation 
peak for the back to back measurement and after 17 km of code propagation in CDC 
fiber link (see Figure 4), respectively. It is worthy of note that dispersion slope 
compensation over the range of wavelengths in the OCDMA code was taken into 
account when choosing the CDC module. The respective autocorrelations were obtained 
by decoding the received signal by the matched OCDMA receiver as is schematically 
shown in Figure 4. The observed uneven (asymmetric) autocorrelation shape in Figure 
6(a) and (b) can be explained by manufacturing imperfections of the matched OCDMA 
encoder and decoder pare. By comparing both autocorrelation peaks side by side we can 
see 0.1ps mismatch in their temporal width caused by the residual fiber link chromatic 
dispersion which is within ~10%  of the back to back value of the autocorrelation peak 
width measurement. This 10% CDC accuracy achieved for the autocorrelation peak 
containing 4 wavelengths (note the code weight 4 for used OCDMA codes) is the same 
as the accuracy achieved for the single wavelength laser pulse seen in Figure 2. This can 
be interpreted that the dispersion slope compensation over the range of used 
wavelengths used by the OCDMA was also achieved. 
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Our measurement results are shown in Figure 6(a) and (b) and depict 
autocorrelation peak for the back to back measurement and after 17 
km of code propagation in CDC fiber link (see Figure 4), respectively. 
It is worthy of note that dispersion slope compensation over the range 
of wavelengths in the OCDMA code was taken into account when 
choosing the CDC module. The respective autocorrelations were 
obtained by decoding the received signal by the matched OCDMA 
receiver as is schematically shown in Figure 4. The observed uneven 
(asymmetric) autocorrelation shape in Figure 6(a) and (b) can be 
explained by manufacturing imperfections of the matched OCDMA 



ISSN: 2180-3811        Vol. 4 No. 1  June 2013

Journal of Engineering and Technology 

58

encoder and decoder pare. By comparing both autocorrelation peaks 
side by side we can see 0.1 ps mismatch in their temporal width caused 
by the residual fiber link chromatic dispersion which is within ~10%  of 
the back to back value of the autocorrelation peak width measurement. 
This 10% CDC accuracy achieved for the autocorrelation peak 
containing 4 wavelengths (note the code weight 4 for used OCDMA 
codes) is the same as the accuracy achieved for the single wavelength 
laser pulse seen in Figure 2. This can be interpreted that the dispersion 
slope compensation over the range of used wavelengths used by the 
OCDMA was also achieved.
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University  
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3.1 Impact of varying chromatic dispersion on ocDMa 
system	performance	in	a	multiuser	environment

The study was carried out using the setup shown in Figure 7. The bit 
error rate was measured for different receiving terminal locations from 
the point A where the link is fully CD compensated (+50 m, +200 m, 
+250 m and +275 m from  the point A). An adequate power control 
was implemented to eliminate the influence of loss associated with the 
increased fiber link lengths. 
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dispersion compensation

In order to generate four user data traffic based on 2D-WH/TS Optical 
CDMA codes, first a spectral slicing of optical supercontinuum 
was performed by Fiber Bragg Gratings (OKI FBG) based OCDMA 
encoders. Mach-Zehnder data modulator driven at OC-48 by a 231-1 
PRBS from an Agilent N4903A series bit error rate tester was used to 
generate data. Traffic from all users was then combined and launched 
via EDFA into the CD compensated Strathclyde – Glasgow University 
fiber link. The received OCDMA signal was then decoded using 
an FBG decoder matched to the User 1 encoder. The decoded signal 
was then sent through attenuators (Agilent 8157A) to a bit error rate 
tester having an 11GHz optical receiver with -18 dB sensitivity (Nortel 
PP10G) as its front end and as needed the decoded OCDMA signal was 
monitored using an oscilloscope, optical autocorrelator, and optical 
spectrum analyzer. Figure 8 shows obtained bit error rate curves when 
four simultaneous users were broadcasting on the network. No error 
floor was observed.
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The effect of the added CD on the overall user 1 data reception due to moving this 
receiving terminal to different locations from the point A (where the link is fully 
compensated) can be seen in Figure 8. Obtained results suggest that to achieve a 
targeted BER performance of 10-9, moving the terminal by 275 m will result in a 7 dB 
power penalty if no chromatic dispersion is accompanying this terminal relocation. On 
the other hand moving the terminal just 50 m will lead to only 1 dB of power penalty. It 
is important to note again that these penalties are unrelated to power losses due to added 
extra length of SMF-28 since we compensated for these additional losses prior taking 
BER measurements.  
 
The observed performance degradation could be explained by the fact that the 
introduced CD causes broadening of multi wavelength pulses within the OCDMA codes 
and also their time skewing. This will impact the autocorrelation peak in our case 
composed of four wavelengths which when unaffected has the theoretical weight of four 
(i.e., height of 4 pulses). However in the presence of the dispersion this is not true 
anymore.  It can be seen from Figure 9 that the time skewing misaligns the perfect time 
overlap of pulses creating the correlation peak thus lowers and broadens the shape of the 
autocorrelation peak. In the multi user environment cross correlations will also 
experience chromatic dispersion broadening. From Figure 3 done for single wavelength 
measurements we can estimate that by moving the terminal by 275 m will result in 
275% broadening of pulses which represent the 2D-WH/TS OCDMA code thus 
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of “residual” chromatic dispersion on the network created by adding 
SMF-28 to 17 km long fully CD compensated fiber link.  FC - indicate 

BER of the system for fully CD compensated 17 km long fiber link 
between Strathclyde and Glasgow University

The effect of the added CD on the overall user 1 data reception due to 
moving this receiving terminal to different locations from the point A 
(where the link is fully compensated) can be seen in Figure 8. Obtained 
results suggest that to achieve a targeted BER performance of 10-9, 
moving the terminal by 275 m will result in a 7 dB power penalty if 
no chromatic dispersion is accompanying this terminal relocation. 
On the other hand moving the terminal just 50 m will lead to only 1 
dB of power penalty. It is important to note again that these penalties 
are unrelated to power losses due to added extra length of SMF-28 
since we compensated for these additional losses prior taking BER 
measurements. 

The observed performance degradation could be explained by the fact 
that the introduced CD causes broadening of multi wavelength pulses 
within the OCDMA codes and also their time skewing. This will impact 
the autocorrelation peak in our case composed of four wavelengths 
which when unaffected has the theoretical weight of four (i.e., height 
of 4 pulses). However in the presence of the dispersion this is not true 
anymore.  It can be seen from Figure 9 that the time skewing misaligns 
the perfect time overlap of pulses creating the correlation peak thus 
lowers and broadens the shape of the autocorrelation peak. In the multi 
user environment cross correlations will also experience chromatic 
dispersion broadening. From Figure 3 done for single wavelength 
measurements we can estimate that by moving the terminal by 275 
m will result in 275% broadening of pulses which represent the 2D-
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WH/TS OCDMA code thus considerably increasing the multi-access 
interference and the crosstalk in the multiuser environment. 
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Figure 9. Autocorrelation peak as seen on the oscilloscope after 17 km OCDMA transmission in CD 
compensated fiber link followed by an extra 200 m SMF-28 
 
Obtained results suggest that even if relatively short distance terminal relocations are 
required they shoud be done by using fully CD compensated fiber spans to maintain 
OCDMA system performance. 
 
3.2       Demonstration of  OCDMA receiver with built-in all-optical clock recovery 

for ultrafast all-optical switching control 
 
The OCDMA testbed in Figure 7 was now retro fitted with an OCDMA receiver with 
built-in all-optical clock recovery (AOCR), (Idris, Tolulope & Glesk, 2012) as is shown 
in Figure 10.  
 

 
 

Figure 10. Receiver side with built-in all-optical clock recovery (AOCR) under the test in the testbed 
 
Its performance was evaluated by taking the BER measurements and by recording eye 
diagram using an Agilent N4903A bit error tester. Our obtained results are in Figure 11.  
No error floor was observed. 
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Obtained results suggest that even if relatively short distance terminal 
relocations are required they shoud be done by using fully CD 
compensated fiber spans to maintain OCDMA system performance.

3.2							Demonstration	of		OCDMA	receiver	with	built-in	all-
optical	clock	recovery	for	ultrafast	all-optical	switching	control

The OCDMA testbed in Figure 7 was now retro fitted with an OCDMA 
receiver with built-in all-optical clock recovery (AOCR), (Idris, Tolulope 
& Glesk, 2012) as is shown in Figure 10. 
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Figure 10. Receiver side with built-in all-optical clock recovery (AOCR) 

under the test in the testbed

Its performance was evaluated by taking the BER measurements and 
by recording eye diagram using an Agilent N4903A bit error tester. Our 
obtained results are in Figure 11.  No error floor was observed.
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Figure 11.  BER and the eye diagram for the user 1 received by using an OCDMA receiver with a built-in 
all-optical clock recovery as recorded by BER tester 
 
In our next experiment the AOCR was then used to drive a 2x2 all optical time gate to 
filter out autocorrelation signal representing the received OCDMA data (see Figure 12). 
Here an optical delay line (ODL) was used to set the proper timing between the 
incoming OCDMA data (autocorrelation peak) and the recovered optical clock. The 
output of the time gate was monitored by using 20GHz bandwidth limited digitizing 
oscilloscope with optical sampling head (Agilent 86105B). A clear eye signal was 
recorded as shown in Figure 12 indicating effective timing jitter supression.     
 

 
 
Figure 12. All-optical switching demonstration with all-optical switch/time gate controlled by all-
optically recovered clock from the  received OCDMA signal 
 
 
4.0 CONCLUSION 
 
We have presented results of our field based investigation of the OCDMA system under 
the varying influence the chromatic dispersion using a 17 km long testbed between 
Strathclyde and Glasgow University. The investigations were carried out using 
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4.0 conclusIon

We have presented results of our field based investigation of the OCDMA 
system under the varying influence the chromatic dispersion using a 
17 km long testbed between Strathclyde and Glasgow University. The 
investigations were carried out using incoherent OCDMA system with 
four simultaneous users each using 2D-WH/TS OCDMA codes based 
on multiwavelength picosecond pulses. We found that high penalty 
was incurred by adding relatively short length of single mode SMF-
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28 fiber to a fully chromatically dispersion compensated 17 km long 
transmission link. Then the testbed was fitted with OCDMA receiver 
with a built-in all optical clock recovery to addressed synchronization 
all-optical time gate under the influence of timing jitter. The all-optically 
recoverd clock was then used to control all-optical gate resulting in 
error free operation and a clean eye diagram. 
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