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ABSTRACT

Particle swarm optimization (PSO) is a stochastic algorithm used for 
the optimization problems proposed by Kenned in 1995. It is a very good 
technique for optimization problems. However, there is a drawback - it 
stuck in the local minima. To improve the performance of PSO, many 
researchers proposed different variants of PSO. Some of the efforts include 
improving the initialization of the swarm, introduce new parameters - 
constriction coefficient and inertia weight,  define the different method 
of inertia weight to improve the performance of PSO, and modifying the 
global and local best particles by introducing the mutation operators in the 
PSO. In this paper, we will see the different variants of PSO with respect 
to initialization, inertia weight and mutation operators.  We also proposed 
a new PSO technique using triangular mutation. The new technique is 
tested on the benchmarked functions. The results show better performance 
when compared to four previous PSO variants.   

KEYWORDS: PSO, Overview of PSO, PSO Variants,PSO and mutation 
Operators, PSO and Inertia Weight

1.0 intrODuctiOn

PSO is a Mehta heuristic algorithm originally proposed by Kennedy and 
Eberhart (Kennedy, J., & Eberhart, R., 1995). The algorithm simulates 
the behavior of bird flock flying together in multi-dimensional space 
in search of some optimum place, adjusting their movements and 
distances for better search (Kennedy, J., & Eberhart, R., 1995). PSO is 
an evolutionary computation method similar to the Genetic Algorithm 
(GA). Swarms called particles are initialized randomly and then search 
for optimal by updating generations. PSO has two approaches: one is 
called cognitive and another is called social.
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The algorithm mimics a particle flying in the search space and moving 
towards the global optimum. A particle in PSO can be defined as  
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1.0 INTRODUCTION  
 
PSO is a Mehta heuristic algorithm originally proposed by Kennedy and Eberhart 
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movements and distances for better search (Kennedy, J., & Eberhart, R., 1995). PSO is an 
evolutionary computation method similar to the Genetic Algorithm (GA). Swarms called 
particles are initialized randomly and then search for optimal by updating generations.PSO 
has two approaches: one is called cognitive and another is called social. 
 
The algorithm mimics a particle flying in the search space and moving towards the global 
optimum. A particle in PSO can be defined as  where i=1, 2, 3…. D and a, b , 
D is for dimensions and R is for real numbers [30]. Each particle has its own velocity and 
position which are randomly initialized in the start.  Each particle has to maintain its 
positions pbest  known as local best position and the Gbest known as global best position 
among all the particles. Following equations are used to update the position and velocity of 
the particle. 
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Where  is the velocity,   is the position  is the personal best position of the particle 
and  is the global best position for the PSO.  ,  are two random numbers ranges [0, 
1] and &  are the leaning factors. 
 
 
2.0 ORIGINAL PSO PSEUDO CODE 

 
According to the PSO algorithm, the objective function that is being optimized will 
evaluate each candidate solution at each iteration and works on the resulted fitness value. It 
will maintain several candidate solutions in the search space. To improve the performance 
of PSO, researchers modified the PSO in different ways. The original PSO pseudo code is 
shown below: 
Initialize the population randomly   
While (Population Size) 
{ 
Loop  
Calculate fitness 
If fitness value is better from the best fitness value 
(pbest) in history then 
Update pbest with the new pbest 
End loop 
Select the particle with the best fitness value from all 
particles as gbest 
While maximum iterations or minimum error criteria is not 
attained 
{ 
For each particle 
Calculate particle velocity by equation (I) 
Update particle position according to equation (II) 
Next  
} 
} 
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3.0 elementS uSeD in PSO

Before working with the PSO, we have to know about the elements 
used in the PSO. First of all, we shall overview the brief concepts of the 
PSO elements.

• Particle---We can define the particle as Pi ε[a, b] where i=1, 2, 
3…D and a, b ε R. Here D is for dimension and R is for real 
numbers.

• Fitness Function---Fitness Function is the function used to find 
the optimal solution. Usually it is an objective function.

• local Best---It is the best position of the particle among all 
positions visited so far. 

• global Best---The position where the best fitness is achieved 
among all particles visited so far.

• Velocity update---Velocity is a vector to determine the speed 
and direction of the particle. Velocity is updated by the equation 
(1). 

• Position update---All particles try to move toward the best 
position for optimal fitness. Each particle in PSO updates their 
positions to find the global optima. Position is updated by 
equation (2). Flow chart of the basic PSO is shown below.
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Figure 1. Flow chart of Basic PSO 
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4.0 PSO VariantS

In 1995, Kennedy proposed PSO (Kennedy, J., &Eberhart, R., 1995). As it 
is mathematically proved so researchers are trying to improve the PSO. 
Therefore, PSO has different variants with different parameters like, 
Initialization, Inertia weight and many other techniques. The details of 
some PSO variants are given below.

4.1 initialization

Initialization of the particles has an important role in the performance 
of PSO. If the initialization is not good then algorithm may search in 
unwanted area and it will be hard to search for the optimal solution. 
The performance of PSO heavily depends on the initialization of the 
swarms (Engelbrechr, A. P., 2005). In this section we will see study the 
different variants of PSO with respect to initialization.

Nguyen et al. (2007) used some low discrepancy sequence to initialize 
the particles. Researcher used Halton, Sobol, and Faure sequences 
to initialize the swarm. They test their proposed variants using six 
standard benchmark functions.  They found that the performance of 
PSO with sobol initialization is best among all the techniques. 

Jabeen et al. (2009) presented an opposition based PSO.  Author claimed 
that by the social phenomena if one person is bad then his opponent 
is good.  They generate the population and opposite population then 
calculate the fitness; the fitter one population is selected to run the PSO. 
According to author the opposite particle is defined as

Popi  =a+b-pi   where i=1, 2, 3…. D is dimension and a, bεR
Where D is the dimension and R is real number.

Pant et al. (2008) used qasi random sequence for initialization of 
the swarm to improve the PSO performance. The authors used the 
vndercorput and sobol sequence for the swarm initialization. They 
used four benchmark functions to perform the experiment. According 
to the results presented by the author, the performance of VC-PSO used 
vendor corrupt sequence and SO-PSO used sobol sequence remain 
dominant on the simple PSO.

Omran (2008) proposed an opposition based learning to improve 
the performance of PSO. They propped three variant of PSO. In one 
experiment, they generated the opposite particles and then calculate 
the fitness of both particles before selecting the fitter particles to run 
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the PSO. In another variant, the lowest fitter particle was replaced with 
its opposite particle during each iteration. Eight benchmark functions 
ware used to test the performance of propped variants with the basic 
PSO. The results show that the presented variants perform well. 

Zhang et al. (2009) proposed an enhance variant of PSO which they 
called quasi-oppositional comprehensive learning particle swarm 
optimizers (QCLPSO).  They used the qausi opposite numbers for the 
swarm initialization.

4.2 constriction Factor 

In this section, we will just overview a variant of PSO in which 
constriction factors has been introduced.

Clerc (2002) proposed an approach to balance the exploration and 
exploitation by introducing a new parameter ‘χ’ called constriction 
factor. By Clerc following equation used to update the velocity 
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the actual inertia weight,wend shows the inertia weight value when the 
algorithm process run the max iterations, d1 and d2 is a factor to control  
w between  wini andwend. Chongpeng et al. (2007) proposed a variant of 
PSO with non-linearlydecreasing inertia weight as
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inertia weight on the maximum number of iteration the another one is 
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Following equation used to set the inertia weight 
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some of the PSO variants with respect to mutation operators.

Wang et al. (2007) proposed a variant of PSO with Cauchy mutation. 
Author mutates the global best particle then compares its fitness with 
the original particle fitness, the fitter one is selected.
Following equation used to mutate the particle.
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mutation is used with opposition based PSO. Pant et al.(2008) presented 
a new version of PSO with adaptive mutation. They proposed two 
versions of PSO AMPSO1 and AMPSO2, in one they mutate the global 
best particle while in another local best particle was mutated. Following 
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where R1 and R2 are random numbers generated by sobol sequence.

Wu et al. (2009) proposed a variant of PSO by using power distribution. 
Author applies the power mutation on the global best particle and then 
check the fitness of both particles original and mutated one and select 
the fitter one. 

Imran et al. (2010) proposed another power mutation operator for 
opposition based PSO. In their proposed technique, they initialize 
the PSO with opposite swarms, and then apply the power mutation 
on global best particle. Author claimed that in this way two times 
performance of PSO improved; at the initialization and also by mutating 
global best to prevent PSO from stagnation.

Imran et al. (2011) presented another variant of PSO by introducing the 
student T mutation. Author used the student T distribution to mutate 
the global best particle.  They claimed that their work has performance 
over Cauchy mutation and adaptive mutation.
Chen (2011) proposed another variant of PSO with mutation operator. 
In this study, author first generate the mutant particle on the basis of 
probability, and then check the fitness of both particle and mutant 
particle, then select fitter one. 

5.0 PrOPOSeD PSO mODiFicatiOn

From  above  study,  it  has  been  observed  that mutating the  global  
best  particle  using different  distribution  cause the performance of 
PSO to improve. However,more investigation to prevent PSO from 
stagnation in local minima is needed. Therefore author present new 
versions of PSO, TPSO. In TPSO global best particle is mutated.  

The global best particle is mutated as.
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7.0 EXPERIMENTAL SETTING 
 

The following experimental setting were used for all techniques: 

Table 2. Experimental setting 

Parameter Value 
Search Space [100,-100] 

C1=C2 1.498 

, are the boundaries of the current search space and STrand() 
is the random number generated by Triangular distribution.
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Inertia Weight 
 
 

Linear decrease 
(0.9-0.4) 

Dimensions 
 
 
 

10 
20 
30 

Iterations 1000 
1500 
2000 

Population size 30 
Number of PSO Runs 30 

 
Keeping above experimental setting we take the average of best 20 runs and the results are 
displayed in the Table 3. 

Table 3. Average of best 20 runs 

Function Dim Iteration PSO[1] OCPSO[17] AMPSO[19] STPSO[23] TPSO 
f1 10 1000 5.03E-53 1.73E-64 4.18E-53 8.98E-98 6.65E-110 

20 1500 4.45E-17 3.13E-27 7.37E-17 2.96E-90 3.55E-101 
30 2000 1.79E-07 2.39E-14 1.66E-10 7.09E-76 6.10E-80 

f2 10 1000 1.36E-65 1.39E-72 1.27E-67 2.33E-80 2.80E-96 
20 1500 2.43E-18 1.10E-27 2.19E-18 1.97E-66 1.83E-73 
30 2000 1.74E-07 8.75E-14 1.53E-09 1.06E-43 1.82E-48 

f3 10 1000 5.37E+00 5.67E+00 5.97E+00 2.14E+00 1.16E-10 
20 1500 3.51E+01 3.21E+01 3.64E+01 1.62E+01 1.94E-15 
30 2000 9.12E+01 8.60E+01 8.72E+01 3.59E+01 2.63E-10 

f4 10 1000 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 
20 1500 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 
30 2000 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

F5 10 1000 2.41E+00 1.81E+00 1.10E+00 1.33E+00 2.65E-8 
20 1500 6.09E+00 6.09E+00 4.58E+00 5.31E+01 3.55E+08 
30 2000 2.95E+01 2.27E+01 4.32E+01 8.19E+01 1.15E+05 

f6 10 1000 2.27E-12 5.12E-17 4.10E-12 6.19E-16 5.44E-10 
20 1500 2.07E-01 1.25E-02 1.18E-01 3.12E-02 1.88E-09 
30 2000 4.72E+00 1.76E+00 4.41E+00 6.75E-01 2.38E-05 

f7 10 1000 1.33E-03 1.23E-03 1.08E-03 1.77E-06 3.67E-09 
20 1500 8.24E-05 1.59E-04 1.59E-04 1.33E-07 1.21E-13 
30 2000 1.50E-05 1.99E-05 1.31E-05 1.56E-09 4.58E-15 

 

 
8.0 CONCLUSION 

 
There are so much work that has been carried out to improve the performance of PSO. In 
original PSO, there was no inertia weight but to improve the performance, researchers 
introduced inertia weight. Then, they tried to improve the performance by trying the 
different initialization methods.  Researchers also work on the global best particle to escape  
from the local minima. For this purpose, they introduce the different mutation operators to 
improve the performance of PSO. 

Keeping above experimental setting we take the average of best 20 runs 
and the results are displayed in the Table 3.
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Table 3. Average of best 20 runs
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original PSO, there was no inertia weight but to improve the performance, researchers 
introduced inertia weight. Then, they tried to improve the performance by trying the 
different initialization methods.  Researchers also work on the global best particle to escape  
from the local minima. For this purpose, they introduce the different mutation operators to 
improve the performance of PSO. 

8.0 cOncluSiOn

There are so much work that has been carried out to improve the 
performance of PSO. In original PSO, there was no inertia weight but 
to improve the performance, researchers introduced inertia weight. 
Then, they tried to improve the performance by trying the different 
initialization methods.  Researchers also work on the global best particle 
to escape  from the local minima. For this purpose, they introduce the 
different mutation operators to improve the performance of PSO.

From above given results, it is observed that the performance of TPSO 
is significantly better than PSO, OCPSO and AMPSO in function 
f1, f2 and f3. The performance of all techniques remains the same for 
function f4. The fitness of f5 varies - when less number of dimensions 
and iterations, OSTPSO performed well.When dimensions are kept 20 
with 1500 iterations, AMPSO performed well but when dimensions 
and iteration are increased to 30 and 2000 respectively, performance 
of CPO was better. For function f6, performance of OCPSO was slightly 
better than STPSO with less number of iterations but when the number 
of iterations and dimension were increased, TPSO performed well 
than other techniques. For function f7, the performance of TPSO is best 
compared to all other techniques.

Over all we have 21 cases. In 14 cases, TPSO performed better than 
all other techniques while in 3 cases, performance of all techniques 
remains the same. OCPSO performed slightly better in 2 cases and 
AMPSO performed well in just one case.
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From above experiments and results, we can say that the presented 
technique performance better then (Kennedy, J., & E berhart, R., 1995; 
Wang, H. et al., 2007;Pant, M. et al., 2008; Imran, M. et al., 2011)
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