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ABSTRACT

Magnetorheological brake is one of x-by-wire system which is performing 
better than conventional brake system. MR brake consists of a rotating 
disc that is immersed with magnetorheological fluid in an enclosure of 
an electromagnetic coil. The applied magnetic field will increase the yield 
strength of the MR fluid where this fluid was used to decrease the speed of 
the rotating shaft. The purpose of this paper is to develop a mathematical 
model to represent MR brake with a test rig. The MR brake model is 
developed based on actual torque characteristic which is coupled with 
motion of a test rig. Next, the experimental are performed using MR brake 
test rig and obtained three output responses known as angular velocity 
response,torque and load displacement. Furthermore, the MR brake was 
subjected to various loads and current. Finally, the simulation results of 
MR brake model are verified with experimental results.   
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1.0 introduction

X-By-Wire is one of the system that has potential to improve 
performance by minimized the number of part used in the system. 
Usually, by wire systems have been employed in several segments such 
as steering system, suspension system, braking system and medical 
equipments (Poynor & Reinholtz, 2001; Wang & Gordaninejad, 2003; 
Diep et al., 2006; Gudmundsson et al. 2010; Karakoc et al., 2008). 
MR brake has introduced as an actuator of brake-by-wire system in 
automotive industries. MR brake employs with MR fluid where this 
fluid solidifies once applied with magnetic field. This fluid is also 
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known as smart fluid where it solidifies by increasing the strength of 
magnetic. Once the fluid is free from magnetic field, it represents as a 
Newtonian fluid behaviour. The MR brake consists of a rotating disc 
immersed with Magnetorheological Fluid (MR fluid) in an enclosure 
of an electromagnetic coil. MR fluid is developed using micron sized 
suspensions measured between 20-50 microns (Carlson, 2001; Bossis 
et al., 2002). The rheological behaviour of MR fluid is similar with the 
carrier fluid when there is no external field is occurred in the fluid (Jolly 
et al., 1998; Park et al., 2006). 

The application of a MR fluid in braking system is related with current 
research work. Li and Du (2003) presented the design and experimental 
evaluation of a  Magnetorheological brake and introduced an 
amplifying factor to evaluate brake performance. Meanwhile, Park et 
al. (2008) presented a design optimization procedure using simulated 
annealing combined with finite element simulations involving 
magnetostatic, fluid flow and heat transfer analysis. MR fluid selection 
for MR brake application, such as magnetic circuit design and torque 
requirements for automotive application was also studied. Karakoc et 
al. (2008) focussed on the investigation of practical MR brake design 
criteria such as material selection, sealing, working surface area, 
viscous torque generation and MR fluid selection for basic automotive 
braking system. Additionally, Tan et al. (2007) studies braking response 
of inertia/load by using an electro-rheological (ER) brake for ER-robotic 
application in term of ER braking velocity response in order to halt the 
robot arm rapidly. In 2009, Nam and Ahn (2009)  proposed the new 
structure of MR brake with the waveform boundary of rotary disk that 
generated more resistance torque compare to the conventional MR 
brake. Furthermore, the MR brake system had been implemented to 
other application such as joystick and prosthetic knee (Li et al., 2007; 
Gudmundsson et al., 2010). 

This paper decribes briefly the modeling and validation of MR brake-
by-wire. The experimental evaluation is also presented for practical 
application of brake-by-wire system. 

2.0 ExpErimEntal apparatuS

Figure 1 shows the testing equipment used in the experiment with the 
load of 50 N and 100 N. The inertia load will be attached to the load 
shaft and coupled with brake shaft to generate a constant or falling 
load that resultant the net torque produce by MR brake. The function 
of AC electric motor is to drive the MR brake shaft to desired velocity 



ISSN: 2180-3811        Vol. 4 No. 1  June 2013

Validation and Experimental Evaluation of Magnetorheological Brake-by-Wire System

111

where it is coupled to the input shaft/rotor of MR brake via pulley and 
A-type V-belt. The speed from the motor is transmitted to the MR brake 
shaft using belt tensional and well fitted beside the electric motor. The 
pulley shaft is connected to the MR brake shaft using jaw coupling and 
same concept also was applied at the load shaft. The pulley shaft and 
load shaft used a pillow block bearing to support the rotating shaft 
where the inner bearing will allow the shaft to rotate in free direction.  

 

Magnetorheological brake and introduced an amplifying factor to evaluate brake 
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The MR brake housing is coupled to a load cell via an arm of length of 
238 mm. In this equipment, the load cell is employed to measure the 
braking torque. The load cell was calibrated at 1 V: 53.4 Nm and the 
maximum torque measured using this sensor is 534 Nm. Next, the load 
cell is connected to the bridge amplifier which functions as the signal 
conditioning. Meanwhile, the rotational speed of the MR brake shaft 
was measured by using an ABS speed sensor. The MR brake test rig is 
equipped with an I/O device for data processing. Next, the Integrated 
Measurement and Control (IMC) device provides signal processing 
of the sensory system. The IMC device that is only capable to receive 
analogue voltage signal. Then, the signals are digitally processed and 
stored in a personal computer using FAMOS control software. IMC 
device is connected to a personal computer using NetBEUI protocol. 
A DC power supply manufactured by GWINSTEK is used to supply 
electric currents to the MR brake electromagnetic coil. All the measured 
data are displayed in Personal Computer (PC) for the further analysis. 

3.0 mathEmatical modEl

The characteristics of MR fluid can be described by using a simple 
Bingham plastic model (Philips, 1969). The constitutive equation for a 
Bingham plastic fluid where the total shear stress (τ) is written as:



ISSN: 2180-3811        Vol. 4 No. 1  June 2013

Journal of Engineering and Technology 

112

 

The MR brake housing is coupled to a load cell via an arm of length of 238 mm. In this 
equipment, the load cell is employed to measure the braking torque. The load cell was 
calibrated at 1V: 53.4 Nm and the maximum torque measured using this sensor is 534 
Nm. Next, the load cell is connected with bridge amplifier as the signal conditioning. 
Meanwhile, the rotational speed of the MR brake shaft was measured by using an ABS 
speed sensor. The MR brake test rig is equipped with an I/O device for data processing. 
Next, the Integrated Measurement and Control (IMC) device provides signal processing 
of the sensory system. The IMC device that is only capable to received analogue voltage 
signal. Then, the signals are digitally processed and stored in a personal computer using 
FAMOS control software. IMC device is connected to a personal computer using 
NetBEUI protocol. A DC power supply manufactured by GWINSTEK is used to supply 
electric currents to the MR brake electromagnetic coil. All the measured data are 
displayed in Personal Computer (PC) for the further analysis.  
 
 
3.0 MATHEMATICAL MODEL 

 
The characteristics of MR fluid can be described by using a simple Bingham plastic 

model (Philips, 1969). The constitutive equation for a Bingham plastic fluid where the 
total shear stress (τ) is written as below: 

 

H p   

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where, H  is the yield stress due to the applied magnetic field, , pH   is the constant 

plastic viscosity which is considered equal to the non-field viscosity of the fluid, and 


 
is the shear strain rate. Based on the Eq. (1), the braking torque generated by the friction 
of the interface between static and moving parts in the MR fluid inside the MR brake 
can be written as equations (Park et al., 2006; Karakoc et al., 2008): 
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Where r is the radius of the disk, sw is the angular velocity of the rotating disk, h  is the 
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Therefore, the total braking torque produced by MR brake can be written as follow  
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parts, a sprocket, a pulley and the load can be written in Eq. (8). 
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4.0 modEl Validation

The MR braking response was tested by using a constant load of 150 N 
in order to  energized MR brake when applied current to the brake coils. 
The response of the MR brake was investigated at four constant applied 
currents that are 1 A, 2 A, 3 A, and 4 A. These three responses that were 
obtained from the experiments were the shaft angular velocity, torque 
and load displacement. As shown in Figure 2. Based on the Figure 
2(a), shaft angular velocity decreases very fast when applied current 
is increase. This is due to the maximum braking torque generated 
by MR brake that is shown in Figure 2(b). The MR brake torque 
increase proportionally when the current increases. Furthermore, the 
load displacement takes longer displacement when lower current is 
applied in this system which is shown in Figure 2(c). Basically, the load 
displacement responses are determined by integrating the MR brake 
shaft angular velocity.
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Figure 2. Measured responses at four constant currents; (a) Shaft angular velocity response, (b) Torque 
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Figure 3. Comparison between model and experimental at several applied current for shaft angular 

velocity response; (a) 1 A, (b) 2 A, (c) 3 A and (d) 4 A  
 
The model and experimental results are compared and it shows a close relationship 
between both results. This response indicates that the model of MR brake actuator with 
a test rig is valid. However, the response time of MR brake torque to reach constant 
steady-state has a delay time which is shown in Figure 4. This is due to the delay 
response of material and sensory system. Nevertheless, the trend is similar for 
experimental and model. 
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Figure 4. Characteristic of torque response between model and experimental; (a) 1 A, (b) 2 A, (c) 3 A and 

(d) 4 A  
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Figure 5. Comparison between model and experimental of load displacement response at several applied 

current; (a) 1 A, (b) 2 A, (c) 3 A and (d) 4 A  
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5.0 ExpErimEntal EValuation

In this section, the MR braking responses were experimentally 
evaluated at various loads  and current. The behaviour of MR braking 
response in term of shaft angular velocity response, torque response 
and load displacement response are been compared. By observing the 
experimental procedure as discussed in previous section, various input 
parameter of MR brake is considered. The trend behaviour of the MR 
brake is influenced by load and current is shown in the results. The MR 
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brake braking behaviour was divided into three sections. First section 
is described about shaft angular velocity response, second section is 
about torque response and last section is load displacement response. 

5.1       angular velocity

In this section, the main objective is to determine the time response 
or settling time of all inertia to decelerate when current is given. The 
current triggering time is 1.5 s for all cases. There are three load are 
tested in the MR braking process that is 50 N, 100 N and 150 N at various 
current. Figure 6 shows the shaft angular velocity response versus time 
at various current. The shaft angular velocity rotates equally for all 
masses at desired speed. The applied current at 1.5 s used to energize 
MR brake to produce braking torque and decelerates all inertia. At 1 
A, 50 N of load decelerates slower and shows the trend of inertia is 
falling down until stationary. When increasing the load to 100 N and 
150 N, the shaft angular velocity takes time over than 6 s to become 
static because of the fluids behavior turned to saturate condition based 
on applied magnetic. When the applied current is increased from 2 A 
until 4 A, the response time of the shaft angular velocity is decreased 
until stationary below 5 s. However, the effectiveness of MR brake 
reduces when the load is increased. This response is shown in Table 2 
where the MR brake is effective at 50 N which is only takes 0.6 s to halt 
compared 100 N and 150 N takes 0.8 s and 1.06 s to halt the rotation of 
all the inertia.
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Figure 6. Shaft angular velocity response versus time at various current; (a) 1 A, (b) 2 A, (c) 3 A and (d) 4 
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Figure 6. Shaft angular velocity response versus time at various current; 

(a) 1 A, (b) 2 A, (c) 3 A and (d) 4 A



ISSN: 2180-3811        Vol. 4 No. 1  June 2013

Journal of Engineering and Technology 

118

Table 2. Stopping time

 

Table 2. Stopping time 
 

 Current (A) 

Load (N) 1 2 3 4 

50 3.6 s 1.01 s 0.72 s 0.6 s 

100  6 s 1.52 s 1.05 s 0.8 s 

150  6 s 2.6 s 1.31 s 1.06 s 

 
5.2       Torque 

 
The effective of MR brake torque at the higher applied current. Figure 7 (a), Figure 
7(b), Figure 7(c) and Figure 7(d) show the behavior of MR brake torque at various input 
applied current. Initially, the measured braking torque using load cell was numerically 
processes using Butterworth filter in order to reduce noise. The applied current is start 
from 1 A to 4 A with step increment 1 A is considered. It can be stated that the applied 
constant current to the MR brake which will overcome the brake torque 10 is also 
constant. The MR brake can produce more torque by increasing the current supplied. 
However, the MR brake cannot generated maximum torque at lower current and it 
shows the decreasing trend of torque response to halt all the inertia at 1 A for 50 N of 
load. Also, the time delay of MR fluid to be fully solidifies is 0.3 s using experimental 
method which is shown in Figure 7. The time delay is increases which +0.05 s when 
load increases with respect of lower load condition.  
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Figure 7. Torque response versus time at various current; (a) 1 A, (b) 2 A, (c) 3 A and (d) 4 A  

5.2       torque

The effective of MR brake torque at the higher applied current. Figure 
7 (a), Figure 7(b), Figure 7(c) and Figure 7(d) show the behavior of MR 
brake torque at various input applied current. Initially, the measured 
braking torque using load cell was numerically processes using 
Butterworth filter in order to reduce noise. The applied current is start 
from 1 A to 4 A with step increment 1 A is considered. It can be stated 
that the applied constant current to the MR brake which will overcome 
the brake torque 10 is also constant. The MR brake can produce more 
torque by increasing the current supplied. However, the MR brake 
cannot generated maximum torque at lower current and it shows the 
decreasing trend of torque response to halt all the inertia at 1 A for 50 
N of load. Also, the time delay of MR fluid to be fully solidifies is 0.3 s 
using experimental method which is shown in Figure 7. The time delay 
is increases which +0.05 s when load increases with respect of lower 
load condition. 

 

Table 2. Stopping time 
 

 Current (A) 

Load (N) 1 2 3 4 

50 3.6 s 1.01 s 0.72 s 0.6 s 

100  6 s 1.52 s 1.05 s 0.8 s 

150  6 s 2.6 s 1.31 s 1.06 s 

 
5.2       Torque 

 
The effective of MR brake torque at the higher applied current. Figure 7 (a), Figure 
7(b), Figure 7(c) and Figure 7(d) show the behavior of MR brake torque at various input 
applied current. Initially, the measured braking torque using load cell was numerically 
processes using Butterworth filter in order to reduce noise. The applied current is start 
from 1 A to 4 A with step increment 1 A is considered. It can be stated that the applied 
constant current to the MR brake which will overcome the brake torque 10 is also 
constant. The MR brake can produce more torque by increasing the current supplied. 
However, the MR brake cannot generated maximum torque at lower current and it 
shows the decreasing trend of torque response to halt all the inertia at 1 A for 50 N of 
load. Also, the time delay of MR fluid to be fully solidifies is 0.3 s using experimental 
method which is shown in Figure 7. The time delay is increases which +0.05 s when 
load increases with respect of lower load condition.  
 

 
     (a) 

 
    (b) 

 
   (c)      (d) 

 
Figure 7. Torque response versus time at various current; (a) 1 A, (b) 2 A, (c) 3 A and (d) 4 A  

'
Figure 7. Torque response versus time at various current; (a) 1 A, (b) 2 

A, (c) 3 A and (d) 4 A



ISSN: 2180-3811        Vol. 4 No. 1  June 2013

Validation and Experimental Evaluation of Magnetorheological Brake-by-Wire System

119

Figure 7(a) and Figure 7(b) shows the longer steady-state of brake 
torque response using heavy load. However, the braking torque 
responses reduce when the load increases. Meanwhile, the torque is 
remains constant when the load increases from 100 N to 150 N where the 
maximum torque can be obtained at various current. From the Figure 
7, the average of MR brake torque at various current is obtained. The 
MR brake net torque at 1 A, 2 A, 3 A and 4 A are 2.54 Nm, 4.46 Nm, 6.31 
Nm and 8.1 Nm. Respectively this can be conclude that the maximum 
torque can be produced by MR brake is 8.1 Nm at 4 A because of the 
MR fluid had reaching the saturation point. Next section discussed 
about load displacement response at various load and current.

5.3       load displacement

The aim of this section is to obtain the load displacement responses when 
current is applied to the MR brake. In this section, the load displacement 
response for each load is numerically processed by integrating the 
shaft velocity response. The shaft rotational speed is converted to 
revolution per second which is divided by 60 s and multiplies with 11 
circumference of the load. Then, the load displacement response was 
obtained after integrations the shaft velocity response. 

Figure 8 shows the load displacement response at various load and 
current. The applied current to the MR brake will decelerates the 
velocity of the load that coupled rigidly to the MR brake shaft. This 
will overcome the load displacement response which is reduced 
significantly based on applied current. At lower current, the load 
displacement response takes longer time to reach the constant steady-
state displacement that can be seen in Figure 8(a) and Figure 8(b). The 
constant steady-state displacement means the load at zero velocity is 
constant at certain displacement. The fast response of the load to reach 
the steady-state displacement at the higher current that can be seen in 
Figure 8(c) and Figure 8(d). The different distance of load displacement 
response was captured and shown in Table 3. The smaller steady-state 
displacement at 4 A current which is at 50 N only takes 2.3 m meanwhile 
100 N is 4.2 m and 150 N is 5.6 m.
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Figure 8. Load displacement response versus time at various current; (a) 1 A, b) 2 A, c) 3 A and d) 4 A  

 
Table 3. Load displacement response 

 

 Current (A) 

Load (N) 1 2 3 4 

50 16.6 m 4.3 m 3.2 m 2.3 m 

100  50 m 8.4 m 4.9 m 4.2 m 

150  60 m 13.9 m 7.3 m 5.6 m 

 
 
6.0 CONCLUSION 

 
The model validation of MR braking response in term of shaft angular velocity 
responses, torque responses and load displacement responses was obtained and 
discussed in this paper. The MR brake with a test rig was developed which is contains 
some instrumentation sensors such as ABS speed sensor and load sensor. The MR brake 
model that been simulated by using MATLAB software to obtained the model result are 
validated with the experimental result. The results validation shows good agreement 
between both graphs in this study. Furthermore, the performance evaluation of MR 
braking response at various load and current are also presented and discussed. When 
increased the load, it will caused the MR brake takes longer settling time and the load 
displacement response becomes longer to constant steady-state displacement that been 
discussed in performance evaluation at various load and current. The heavier load will 
reduce the effectiveness of MR brake..  
 
 
7.0 ACKNOWLEDGEMENT 

 
The authors gratefully acknowledged the financial support from Universiti Teknikal 
Malaysia Melaka and The Ministry of Higher Education, Malaysia (MoHE) under 
Exploratory Research Grant Scheme (ERGS), grant no.: 
ERGS/1/2012/TK08/UTEM/02/1/E00007.  
 
 

 
Figure 8. Load displacement response versus time at various current; 

(a) 1 A, b) 2 A, c) 3 A and d) 4 A 

Table 3. Load displacement response

 

 
     (c) 

 
     (d) 

 
Figure 8. Load displacement response versus time at various current; (a) 1 A, b) 2 A, c) 3 A and d) 4 A  

 
Table 3. Load displacement response 

 

 Current (A) 

Load (N) 1 2 3 4 

50 16.6 m 4.3 m 3.2 m 2.3 m 

100  50 m 8.4 m 4.9 m 4.2 m 

150  60 m 13.9 m 7.3 m 5.6 m 

 
 
6.0 CONCLUSION 

 
The model validation of MR braking response in term of shaft angular velocity 
responses, torque responses and load displacement responses was obtained and 
discussed in this paper. The MR brake with a test rig was developed which is contains 
some instrumentation sensors such as ABS speed sensor and load sensor. The MR brake 
model that been simulated by using MATLAB software to obtained the model result are 
validated with the experimental result. The results validation shows good agreement 
between both graphs in this study. Furthermore, the performance evaluation of MR 
braking response at various load and current are also presented and discussed. When 
increased the load, it will caused the MR brake takes longer settling time and the load 
displacement response becomes longer to constant steady-state displacement that been 
discussed in performance evaluation at various load and current. The heavier load will 
reduce the effectiveness of MR brake..  
 
 
7.0 ACKNOWLEDGEMENT 

 
The authors gratefully acknowledged the financial support from Universiti Teknikal 
Malaysia Melaka and The Ministry of Higher Education, Malaysia (MoHE) under 
Exploratory Research Grant Scheme (ERGS), grant no.: 
ERGS/1/2012/TK08/UTEM/02/1/E00007.  
 
 

6.0 concluSion

The model validation of MR braking response in term of shaft angular 
velocity responses, torque responses and load displacement responses 
was obtained and discussed in this paper. The MR brake with a test rig 
was developed which is contains some instrumentation sensors such 
as ABS speed sensor and load sensor. The MR brake model that been 
simulated by using MATLAB software to obtained the model result are 
validated with the experimental result. The results validation shows 
good agreement between both graphs in this study. Furthermore, 
the performance evaluation of MR braking response at various load 
and current are also presented and discussed. When increased the 
load, it will caused the MR brake takes longer settling time and the 
load displacement response becomes longer to constant steady-state 
displacement that been discussed in performance evaluation at various 
load and current. The heavier load will reduce the effectiveness of MR 
brake. 
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