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ABSTRACT

There are seven mathematical operations to calculate the mapping function 
values for nonhydrostatics UNBab mapping function. This mapping 
function is chosen to be simplified due to its ability to calculate mapping 
function value down to two (2) degree of elevation angle. To simplify the 
model, regression method is used in order to get the similar result. The sum 
of errors calculation shows that the deviation of the simplified model from 
the original models is not significant. 
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1.0 iNtrodUctioN

In 1972, the founder of mapping function, Marini states that the elevation 
angle Ε dependence of any horizontally stratified atmosphere can be 
approximated by expanding in a continued fraction in term of 1/ sin 
Ε(Marini, 1972). The total tropospheric delay values can be obtained by 
multiplying the mapping function values with zenith hydrostatic delay 
and also zenith non hydrostatic delay as given in equation (1) below 
(Schuler, 2001):
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1.0 INTRODUCTION 

In 1972, the founder of mapping function, Marini states that the elevation angle E dependence of 
any horizontally stratified atmosphere can be approximated by expanding in a continued fraction in 
term of 1/ sin E  (Marini, 1972). The total tropospheric delay values can be obtained by multiplying 
the mapping function values with zenith hydrostatic delay and also zenith non hydrostatic delay as 
given in equation (1) below (Schuler, 2001): 

          )(.)(. EmZWDEmZHDTD wh       (1) 

where:  

ZHD  =  zenith hydrostatic delay (m) 
ZWD  = zenith wet delay (m) 

)(Emh = hydrostatic mapping function 
)(Emnh  = non-hydrostatic mapping function 

2.0 SIMPLIFICATION PROCESS OF NONHYDROSTATICS UNBab MAPPING 
FUNCTION  

   
In 2003, Guo, a researcher from the University of New Brunswick, has established the )(EUNBab
mapping function model. The model has 7 operations in a form of continued fraction. The 
nonhydrostatic component of ( )UNBab E is written as (Guo, 2003): 

where: 

ZHD  =  zenith hydrostatic delay (m)

ZWD  = zenith wet delay (m)

)(Emh  = hydrostatic mapping function

)(Emnh  = non-hydrostatic mapping function
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2.0 SimpliFicatioN  proceSS  oF  NoNhydroStaticS 
UNBaB mappiNg FUNctioN 

In Guo (2003), a researcher from the University of New Brunswick, has 
established the  mapping function model. The model has 7 operations 
in a form of continued fraction. The nonhydrostatic component of  is 
written as:
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Therefore, equation (3) has changed the shape from hyperbolic graph 
into linear graph as shown in equation (4) The gradient of B and the 
graph will intersect the  axis at   as shown in Figure 2 below.
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3.0 calcUlatioN oF SUm oF error (Soe) For 
UNBaB Nh (E)  

Sum of error (SOE) method can be used to show how the simplified 
models deviate from the original model. Smaller deviation is better, 
which shows that the simplified model is closer to the original model. 

Table 1. Sum of error between S and simplified models S1 & S2

3.0 CALCULATION OF SUM OF ERROR (SOE) FOR UNBab nh (E)

Sum of error (SOE) method can be used to show how the simplified models deviate from the 
original model. Smaller deviation is better, which shows that the simplified model is closer to 
the original model.  

Table 1. Sum of error between S and simplified models S1 & S2

E S S1 S2 (S-S1)^2 (S-S2)^2 
2 28.636 26.607 27.849 4.118 0.621 
5 11.471 11.482 10.602 0.000 0.756 

10 5.758 6.080 5.413 0.104 0.120 
20 2.924 3.220 2.906 0.088 0.000 
30 2.000 2.220 2.067 0.048 0.004 
40 1.556 1.705 1.640 0.022 0.007 
50 1.305 1.389 1.379 0.007 0.005 
60 1.155 1.175 1.201 0.000 0.002 
70 1.064 1.020 1.072 0.002 0.000 
80 1.015 0.903 0.973 0.013 0.002 
90 1.000 0.810 0.895 0.036 0.011 

SOE 4.438 1.529 

Table 1 shows that the sum of error is very small, which is closer to the original model. 
Therefore, the difference of mapping function between the original model and the simplified 
model is not significance.   

4.0 COMPUTATION TIME FOR UNBabnh(E)

The computation time for calculating (100,000 cycles) the original model and also the 
simplified model for )(EUNBab nh  can be shown using CodeGear C++ Builder 2007 software 
(Hamzah, 2008) 

Table 2. Comparison for the computation time 

Model 
Computation time for 
original model , S (ms)

Computation time for 
simplified model , S1 (ms)

Reduction of computation time 
(times)

nhUNBab 244.3 63.1 3.9 

Table 2 shows that the computation time between the original model and modified model 
shows that the modified )(EUNBabnh model is 3.9 times faster than the original model. 

Table 3. Reduction percentage of the number of model operations 

Model Number of operations 
(Original model, S) 

Number of operations 
(Simplified model, S1)

Operation 
reduction 

Percentage of 
reduction 

nhUNBab 7 2 5 71.4 

From Table 3, the simplified )(EUNBabnh model can reduce the number of operations up to 
71.4 percent compared to the original model.  

Table 1 shows that the sum of error is very small, which is closer to the 
original model.

Therefore, the difference of mapping function between the original 
model and the simplified model is not significance.  
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of operations up to 71.4 percent compared to the original model.

5.0 coNclUSioN

Based on sum of error (SOE) result, the simplified models, S1 and S2 
are only 4.438 and 1.529 respectively which are very small and not 
significant compare to the original model, S. The computation time for 
the simplified model, S1 is reduced, which is 3.9 times faster than the 
original model. Lastly, the number of model operations of the simplified 
model is reduced 71.4 percent from the original model, S. Based on the 
results above, the simplified 
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  mapping function model can 
be used to replace the original model due to its simpler model, smaller 
sum of error values and also the shorter computation time compared 
to the original model.
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