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ABSTRACT 

 

 Interaction (t-way) testing is a common sampling strategy to minimize combinatorial 

test data from large configuration space based on the defined interaction strength (t). 

Here, all t-way strategies generate the t-way test suite with the aim to cover every 

possible combination produced by the interacting parameters (or also known as tuples). 

In many systems under test (SUT), there are some known combinations that are 

impossible to occur based on the requirements set to the system. These combinations 

(termed constraints) have to be excluded from the final test suite. This paper describes 

the generation of t-way test suite using the Late Acceptance Hill Climbing based 

Strategy (LAHC) in the presence of constraints. Our benchmarking results have been 

promising as LAHC gives competitive results in many constraints configurations 

considered. 

  

KEYWORDS: Hill Climbing; late acceptance; combinatorial testing; optimizations 

algorithms; test cases generatio; natural based algorithm 

 

 

1.0 INTRODUCTION  

 

Given potentially large possible input parameters, exhaustive testing of any typical 

software is practically impossible. As such, many sampling based strategies (such as 

random testing (Mandl, 1985), each-choice and base-choice (Ammann & Offutt., 1994), 

and anti-random (Malaiya, 1996) have been proposed in the literature to help test 

engineers in selecting a subset of test cases (i.e. from the exhaustive testing) that would 

maximize the probability of fault detection. Despite of their usefulness, the 

aforementioned strategies are not designed to tackle faults due to interaction. As such, 

their applicability is deemed limited to certain types of faults. 

 

Addressing these issues, researchers have turned into t-way strategies (Zamli, Othman, 

Younis, & Zabil, 2011) whereby t indicates the interaction strength. Here, all the t-way 

strategies generate t-way test suite with the aim to cover every possible combination 

produced by the interacting parameters (or also known as tuples). In many systems 

under test (SUT), there are some known combinations that are impossible to occur 

based on the requirements set to the system. These combinations (termed constraints) 

have to be excluded from the final test suite. 
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While many t-way strategies have been proposed in literature for the past 20 years (e.g. 

GTWay (General T-Way) (Klaib, 2009; Zamli, Klaib, Younis, Isa, & Abdullah, 2011), 

MIPOG (Modified In Parameter Order Generator) (Younis, 2010; Younis & Zamli, 

2010; Younis, Zamli, & Isa, 2008a, 2008b), TConfig (Test Configuration) (William, 

2010) & TCG (Test Case Generater) (Tung & Aldiwan, 2000)), few strategies have 

sufficiently considered constraints during test generation process.  In fact, HSS  

(Harmony Search Strategy) (Alsewari & Zamli, 2012), PICT ( Pairwise Independent 

Combinatorial Testing) (Cohen, 2004), mAETG (Modefied Automatic Efficient Test 

Generator ) (Cohen, Dwyer, & Shi, 2007), SA (Simulated Annealing) (Cohen et al., 

2007) and TestCover (Sherwood., 2006a) are amongst the few known t-way strategies 

that address constraints issues. 

 

Complementing the existing works, this paper describes a novel strategy, called LAHC, 

based on Late Acceptance Hill Climbing Algorithm that is capable of generating the t-

way test suite in the presence of constraints. The main contribution of the work is that it 

is the first constraints supported t-way strategy that is developed based on the Late 

Acceptance Hill Climbing Algorithm. Our benchmarking results have been promising 

as LAHC gives competitive results in many constraints configurations considered. 

Section 2 highlights covering array notation. Section 3 provides information on the 

problem definition model. Section 4 describes the related works. Section 5 highlights 

the general Late Acceptance Hill Climbing. Section 6 elaborates our developed strategy 

based on the Late Acceptance Hill Climbing Algorithm. Section 7 describes our 

evaluation experiments. Finally, Section 8 provides our conclusion and future work. 

  

2.0 COVERING ARRAY NOTATIONS  

 

Mathematically, t-way interaction test suite can be abstracted using the covering array 

(CA) notations. Normally, the CA has four parameters; N, t, p, and v (i.e., CA (N, t, vp). 

Here, the symbols p, v, and t are used to refer to the number of parameters, values, and 

interaction strength for the CA, respectively. For example, CA (9, 2, 34) represents a test 

suite consisting of 9x4 arrays (i.e., the rows represent the size of test cases (N), and the 

column represents the parameter (p)). In this case, the test suite also covers two-way 

interaction for a system with four 3-value parameters.  

 

Similar to CA, mixed covering array (MCA) has three parameters; N, t, and 

Configuration (C) (i.e., MCA (N, t, C)). In addition to N and t that carry the same 

meaning as in CA, MCA adopts a new symbol, C. Consistent with the earlier given 

notations, C represents the parameters and values of each configuration in the following 

format: v1 p1 v2 p2… vn pn indicating that there are p1 parameters with v1 values, p2 

parameters with v2 values, and so on. For example, MCA (1265, 4, 102 41 32 27) 

indicates the test size of 1265 that covers four-way interaction. Here, the configuration 

takes 12 parameters: two 10-value parameters, one 4-value parameter, two 3-value 

parameters, and seven 2-value parameters.  

 

To cater for constraints covering array (CCA) or mixed-constraints covering array 

(MCCA); a new variable called forbidden (F) interaction is introduced to represent the 
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set of disallowed interactions (i.e., CA (N, t, vp, F) or MCCA (N, t, C, F)). Here, F takes 

the following format {Fa,b} where a indicates the pth parameter and b indicates the vth 

value are within the list of constraints. For example, consider CCA (10, 2, 33, F) where 

F = {F1,1,F3,1}. In this case, the CCA indicates the test size of 10 for pairwise interaction 

of three 3-value parameters with constraints pair interaction elements from parameter 1 

and value 1, as well as parameter 3 and value 1. 

 

3.0 PROBLEM DEFINITION MODEL  

 

To illustrate the problem of t-way testing and constraints, a simplified-pizza-ordering 

system will be elaborated based on the example in (Alsewari & Zamli, 2012). The 

simplified-pizza-ordering system takes five parameters as follows (see Table 1).  

 

 

Table 1. Simplified-pizza-ordering System  

Pizza Type  

(P1)  

Crust  

(P2)  

Toppings  

(P3)  

Size  

(P4)  

Delivery  

(P5)  

Vegetarian Cheese  Thin Crust  Roasted Chicken  Large  Eat In  

Meat Lover  Extra Thick  Ground Beef  Medium  Take Away  

 Mushroom  Small  

 

Here, Pizza Type, Toppings and Size take 3 possible values whilst Crust and Delivery 

take 2 possible values. Exhaustive testing of all possible interactions for the 

aforementioned pizza ordering system requires 2 × 2 × 3 × 3 × 2 = 72 test cases. Now, 

pairwise (2-way) interactions can be tested using 9 test cases as shown in Table 2.  

 

Table 2. Pairwise Test Suite for CA (N, 2, 23
 32) 

No Pizza Type Crust Toppings   Size Delivery 

1 Vegetarian 

Cheese 

Thin Crust Roasted Chicken Small Take Away 

2 Meat Lover Extra Thick Mushroom Small Eat In 

3 Vegetarian 

Cheese 

Extra Thick Ground Beef Large Take Away 

4 Meat Lover Thin Crust Ground Beef Medium Eat In 

5 Vegetarian 

Cheese 

Thin Crust Mushroom Large Eat In 

6 Meat Lover Extra Thick Roasted Chicken Medium Take Away 

7 Vegetarian 

Cheese 

Thin Crust Mushroom Medium Take Away 

8 Meat Lover Extra Thick Roasted Chicken Large Eat In 

9 Meat Lover Thin Crust Ground Beef Small Eat In 

 

Referring to Table 2, it can be deduced that each 2-way interaction between parameters 

are covered at most once (indicating that the given result is the most optimal one). 

Nonetheless, there exist a number of constraints. The pair interactions between Pizza 

Type (Vegetarian) and Topping (Ground Beef, Roasted Chicken) are impossible, hence, 

must be forbidden. By the same token, pair interaction between Pizza Type (Meat 
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Lover) and Toppings (Mushroom) is also forbidden. Using the mixed-constraints 

covering array notation discussed earlier, the system configuration can be formally 

expressed as CA (N, 2, 23 32, F), where F= {(F1,1,F3,1), (F1,1,F3,2), (F1,2,F3,3)}. 

Considering these constraints, the correct representation of CA is given in Table 3. 

The results in Table 3 faithfully forbid the given constraints.  Hence, the 2-way 

interactions (Pizza Type <<>> Topping) featuring Vegetarian Cheese will only cover 

Mushroom whilst the two way interactions featuring Meat Lover can take both Roasted 

Chicken as well as Ground Beef.  

 

Table 3. 

Pairwise Test Suite  for CA (N, 2, 23
 32, F), where F= {(F1,1,F3,1), (F1,1,F3,2), (F1,2,F3,3)} 

No Pizza Type Crust Toppings   Size Delivery 

1 Vegetarian 

Cheese 

Extra Thick Mushroom Medium Take Away 

2 Meat Lover Thin Crust Roasted Chicken Large Take Away 

3 Meat Lover Extra Thick Ground Beef Medium Eat In 

4 Vegetarian 

Cheese 

Thin Crust Mushroom Small Eat In 

5 Meat Lover Extra Thick Roasted Chicken Medium Eat In 

6 Meat Lover Thin Crust Ground Beef Medium Take Away 

7 Vegetarian 

Cheese 

Extra Thick Mushroom Large Eat In 

8 Meat Lover Extra Thick Roasted Chicken Small Take Away 

9 Meat Lover Thin Crust Ground Beef Large Take Away 

 

 

4.0 RELATED WORK 

 

In general, existing t-way strategies can be categorized into two categories based on the 

dominant approaches, that are, algebraic approaches or computational approaches 

respectively (Lei, Kacker, Kuhn, Okun, & Lawrence, 2007).  

 

Algebraic approaches construct test sets using pre-defined rules or mathematical 

function (Lei et al., 2007). Often, the computations involved in algebraic approaches are 

typically lightweight, and in some cases, algebraic approaches can produce the most 

optimal test sets. However, the applicability of algebraic approaches is often restricted 

to small configurations (Lei et al., 2007; Yan & Zhang, 2006). Orthogonal Arrays (OA) 

(Hartman & Raskin, 2004; Hedayat, Sloane, & Stufken, 1999), MOA (Mandl, 1985) 

and TConfig (Williams, 2002) are typical example of the strategies that are based on 

algebraic approach.  

 

Unlike algebraic approaches, computational approaches often rely on the generation of  

all-pair combinations. Based on the all-pair combinations, the computational approaches 

iteratively search the combinations space to generate the required test case until all pairs 

have been covered. In this manner, computational approaches can ideally be applicable 

even in large system configurations. However, in the case where the number of pairs to 

be considered is significantly large, adopting computational approaches can be 
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expensive due to the need to consider explicit enumeration from all the combination 

space. Example of strategies that adopt this approach includes An Automatic Efficient 

Test Generator (AETG) (Cohen, Dalal, Fredman, & Patton, 1997; Cohen, Dalal, 

Parelius, Patton, & Bellcore, 1996),  its variant (mAETG) (Cohen, 2004), PICT (Keith 

& Doug, 2006), IPOG (Lei et al., 2007), Jenny (Pallas, 2003), TVG (Arshem, 2009; Yu-

Wen & Aldiwan, 2000),  IRPS (Younis, Zamli, & Isa, 2008), GA (Shiba, Tsuchiya, & 

Kikuno, 2004), ACA (Shiba et al., 2004), and SA (Jun Yan & Zhang). 

 

Despite of their usefulness, much of the aforementioned strategies do not provide the 

support for constraints. Hence, in line with the scope of the paper, what follows is the 

review of strategies that addresses the problem of constraints.  

 

Automatic Efficient Test Generator (or AETG) (Cohen et al., 1997; Cohen et al., 1996) 

and employ a greedy search algorithm based on 2-way interaction pairing in order to 

generate the final test suite. In this manner, the generated test case is highly non-

deterministic. A number of variations of AETG have been developed over the years, 

including AETGm and mAETG_SAT (M.B.  Cohen, M.B.  Dwyer, & Jiangfan  Shi, 

2007). Unlike AETG and AETGm, mAETG_SAT provides the support for constraints 

through its forbidden tuple implementation. 

 

PICT (Keith & Doug, 2006) generates all specified interaction tuples and randomly 

selects their corresponding interaction combinations to form the test cases as part of the 

complete test suite. In case a particular test case matches a specified constraint, PICT 

randomly generates a new combination for covering the interaction tuples. Due to its 

random behaviour, PICT tends to give a non-optimal test size as compared to other 

strategies. 

 

TestCover (Sherwood., 2006b) is a commercial t-way strategy implementation. No 

implementation details have been published in the literature apart from a list of 

benchmark configurations on constraints that can be obtained from its website.  

 

SA (Cohen, Gibbons, Mugridge, & Colbourn, 2003) relies on a large random search 

space for generating a t-way test suite. Using probability-based transformation 

equations, SA adopts binary search algorithm to find the best test case per iteration to be 

added to the final test suite. SA addresses constraints support through its variant 

strategy, called SA_SAT Cohen (2009).   

 

HSS (Alsewari & Zamli, 2012) is perhaps the most recent t-way strategy that addresses 

the constraints problem for the t-way test suite generation. Based on the Harmony 

Search Algorithm, HSS adopts two probability values (i.e. the considering rate and pitch 

adjustment rate). Here, global search is iteratively performed by randomizing values in 

the Harmony memory whereby the local best value can be selected given a considering 

rate probability. Here, local best value can be considered for improvements for further 

improvements in the local search (i.e. with pitch adjustment probability). At each 

iteration, the best value will be added to the final test suite (provided that they do not 

cover constraints) until all the required interactions are covered.  
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5.0 LATE ACCEPTANCE HILL CLIMBING ALGORITHM  

 

Late Acceptance Hill Climbing Algorithm is started from a randomly generated 

potential solutions captured in to the LAHC memory (in the form of list with fixed 

length). LAHC then generates a current neighbour to be compared one-value-at-a-time 

with the corresponding value from the LAHC memory.  LAHC also maintains the 

previous cost function in the memory to allow selection of the best fit value. Ideally, the 

candidate cost is compared with the selected ith cost from the memory. If the cost is not 

worse, the candidate will be accepted (as the current local best). Upon acceptance, the 

cost of the new current solution will be made to replace the original ith cost from the 

memory. Here, the list keeps the fitness array Fa of length Lfa (Fa = {f0, f1,f2..fLfa-1}). The 

position v, at the ith iteration can be calculated via: 

 

  

 

where mod represents the remainder of the integer division 

 

Assuming minimization problem, the final acceptance condition at ith iteration can be 

expressed as: 

 

 
  

where  = the candidate cost;  = the current cost; = the cost of the current 

Lfa iteration before 

 

The complete pseudo code for LAHC can be summarised in Figure 1.  

 

Produce an initial solution s  

Calculate initial cost function C(s)  

Specify Lfa 

for all k ϵ {0...Lfa-1}  

  begin 

    s=random(s)  

    fk := C(s) 

 end  

Assign the initial iteration I:= 0;  

While not a chosen stopping condition is met  

  Construct a candidate solution s*  

  Evaluate its cost function C(s*)  

  v :=I mod Lfa  

  if C(s*)≤ fv or C(s*)≤ C(s) 

  then accept candidate (s :=s*)  

  Insert cost value into the list fv:= C(s)  

  Increment the iteration I:= I+1  

end while 
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Figure 1.  General Purpose LAHC Algorithm 

 

 

6.0 ADAPTING LATE ACCEPTANCE HILL CLIMBING ALGORITHM 

FOR T-WAY TEST GENERATION  

 

The optimization problem of concerned can be specified using on Equations (3 and 4).  

 

 

Subject to  

where  is an objective function capturing the weight of the test case in terms of the 

number of covered interactions; x is the set of each decision variable  is the set 

of possible range of values for each decision variable, that 

is,   for discrete decision variables 

( ); N is the number of decision parameters; and  is the 

number of possible values for the discrete variables. 

 

Addressing the aforementioned optimization problem, our LAHC strategy works as 

follows. 

 

 

 

A. Parameter Initialization 

 

Firstly, the LAHC accepts the input parameters and their corresponding values. Then, 

the LAHC generates the interactions list IL containing all interactions tuple 

combinations for each pair which later forms the objective function. Apart from 

accepting input parameters and their values, LAHC also needs to initialize the size and 

values of Lfa as well as the number of iteration, M. 

 

Owing to the need to generate a population of interaction test cases as opposed to single 

optimization problem, there is a need to modify the structure of Lfa as well as to add the 

number of iteration into the original LAHC. In this case, it is proposed that Lfa keeps 

both the cost function value as well as its corresponding candidate solution. Here, when 

LAHC decides to accept the solution in Lfa, it can immediately use that solution as the 

basis for the next neighbourhood solution (i.e. for local search).  

 

As the name suggests, M specifies the number of iteration for improving Lfa. Here, the 

value of M must be greater than or equal to the size of Lfa (M≥Lfa size), that is, to ensure 

that all the values in Lfa are visited at least once (see equation 1). 
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B. Diversification and Intensification  

 

To achieve optimal solution, there is a need for sufficiently elaborate local and global 

search via exploiting the diversification and intensification property of the algorithm of 

interest.   

Within the general purpose LAHC algorithm, diversification for global search is 

appropriately addressed by the generation of random initial solution within the Lfa list. 

However, the intensification element within the local search is missing.  

 

Addressing this intensification issue, there is a need for a good perturbation function 

which can “slightly” modify the current local best solution to get better solution (see 

Figure 2). For instance, consider a solution candidate,  (see Equation (5)): 

 

)                                                          (5) 

 

If  range values is {0, 1, 2, 3, 4, 5}, and the new in the Lfa has the value of {3} 

then this value can be moved to the neighbouring value {4}. To ensure that only slight 

modification is done, we introduce two probability value called Pchange and Pdirection 

respectively. Here if both Pchange =0.5 and Pdirection = 0.5, there is only 50% chance of 

 to be changed or remained. Now, if is going to be changed, it can have equal 

chance of changing either in the lower, upper, or combination of both directions.  
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function Pertubate (solution s) 

 begin 

    for all i ϵ {0...length (s)} 

    begin 

       with probability, Pchange= 0.5   

        begin 

           with probability, P direction = 0.5  

               if (Pdirection<0.5) // move down 

                   begin 
                      if   xi  = max value range 

                           xi := xi -1  

                      else 

                          xi := xi +1  

                   end 

              else   //move up 

                 begin  

                    if   xi  = min value range 

                        xi := xi +1  

                    else 

                       xi := xi -1  

                end 

           end 

            update s(xi) 

       end 

    end 

        return (s);   

 end  

Figure 2.  Probabilistic Pertubation Function 

 

At first sight, the approach of adopting two probabilistic values in LAHC appears 

similar to HSS. A closer look reveals some fundamental differences. Firstly, in HSS, the 

two probabilistic values are used to decide whether or not to use a random value or a 

value from memory for improvisation as well as whether or not to do pitch adjustment 

of the current values. Within LAHC, Pchange is used to decide whether to pertubate the 

current values much like the pitch adjustment in HSS.However, the use Pdirection is 

completely different. In LAHC, Pdirection is used to decide on the direction of the 

neighbourhood search and not on the use of a random value or any existing value from 

memory.  

 

C. Control Loop with Interaction Coverage iteration, M iteration and Lfa Memory 

Update 

 

Using the general Late Acceptance Hill Climbing algorithm with the aforementioned 

perturbation function, the complete LAHC strategy can be summarised in Figure 3. 
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Define interactions to cover list, L 

Define the constraints list, F 

Produce an initial solution s  

Calculate initial cost function C(s)  

             Specify Lfa, and iteration M 

             Populate F with constraints 

             while L is not empty 

  begin 

     /////////////////// diversification ///////////////////  

     for all k ϵ {0...Lfa-1} do randomize fk := s,C(s)  

    

  Assign the initial number of iteration I:= 0;  

  do until I=M 

     Construct a candidate solution s* based on at  

     least 1 uncovered pair  

     Calculate its cost function C(s*)  

     v :=I mod Lfa  

     if C(s*)≤ fv or C(s*)≤ C(s) 

     then accept candidate (s :=s*) 

 

      /////////////////// intensification ///////////////////  

     s:=pertubate (s) 

     if C(s)> fworst 

      Replace the worst solution in Lfa , fworst:= s,C(s)  

     Increment the number of iteration I:= I+1  

  end do 

    Pick the best s  from Lfa not in F 

    If exist best s not violating F 

        Add best s  to the final suite 

    Reset Lfa  for the next iteration 

 end 

Figure 3. LAHC Strategy 

  

Here, the internal M iteration loop will iteratively update Lfa with the local best value. 

Here, an index of the worst solution in Lfa is kept internally to facilitate the update of Lfa. 

Upon completion of the M iteration, the local best solution (with the best Cs) will be 

taken into the final test suite. Here, LAHC maintains the list of constraints as forbidden 

list in order to make sure that the local best solution does not contain the constraints 

tuple. If so, new test value will be generated accordingly. The main iteration loop will 

stop when all the interactions are covered. 

 

7.0 EVALUATION EXPERIMENTS 

 

In this section, we used other existing strategies that support constraints using the 

experiments described by (Alsewari & Zamli, 2012; Cohen, 2004) as the benchmarking 

for LAHC. For our experiments, we have used Lfa = 100, Pchange=0.2, Pdirection=0.5, and 

M iteration =1000 for all the experiments. Here, we report the best results after 20 runs 

for statistical significance. Table 4 summarizes the results. Here, the best generated 
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results are highlighted in bold font. Entries marked with Not Supported (NS) indicates 

that the configurations are not supported by the given strategy implemented. 

 

Table 4. 

Comparison in Terms of the Test Suite Size for Nine System Configurations in the 

Presence of Constraints  

N CCA 
LAH

C 

HS

S 

SA_SA

T 

mATEG_S

AT 

PIC

T 

TestCov

er 

1 CCA(N, 2,33,F{}) 9 9 9 9 10 9 

F={(F2,3,F3,1),(F2,2,F3,1),(F1,1,F3,2),(F1,3,F2,4)(F1,3,F3,3),(F1,3,F2,3,F

3,3)} 

10 10 10 10 10 10 

2 CCA(N, 2,43,F{}) 16 16 16 16 17 16 

F={(F1,1,F2,2),(F1,3,F3,4),(F1,4,F2,4,F3,1)(F1,3,F2,2)} 17 16 17 17 19 17 

3 CCA(N, 2,53,F{}) 25 25 25 25 26 25 

F={(F1,2,F2,2),(F1,5,F3,3),(F1,5,F3,5),(F1,5,F2,4,F3,2),(F1,5,F2,3),(F1,2,

F2,4)} 

25 26 26 26 27 30 

4 CCA(N, 2,63,F{}) 38 36 36 37 39 36 

F={(F1,4,F2,6),(F2,4,F3,5),(F1,3,F2,1),(F2,2,F3,3),(F1,4,F3,2),(F2,4,F3,2),

(F1,6,F2,5,F3,5)} 

36 36 36 37 39 38 

5 CCA(N, 2,73,F{}) 51 49 49 52 55 49 

F={(F2,1,F3,6),(F1,6,F2,6,F3,4),(F1,5,F3,1),(F1,7,F2,5),(F1,2,F2,5),(F1,7,

F2,4)} 

53 51 52 52 56 54 

6 CCA(N, 3,54,F{}) 145 138 127 143 151 NS 

F={(F1,4,F3,3,F4,2),(F2,2,F4,4),(F1,3,F2,4),(F1,2,F3,4)} 141 139 140 138 143 NS 

7 CCA(N, 3,64,F{}) 253 240 222 247 260 NS 

F={(F1,5,F4,3),(F3,4,F4,2),(F2,3,F4,3),(F2,2,F3,3)} 245 238 251 241 250 NS 

8 CCA(N, 3,74,F{}) 409 377 351 395 413 NS 

F={(F2,3,F3,7),(F2,6,F3,7),(F2,5,F3,3),(F4,2,F4,6)(F3,3,F4,5),(F1,3,F3,7)} 395 377 438 383 401 NS 

9 CCA(N, 4,35,F{}) 94 89 NS NS NS NS 

F={(F1,2,F2,2,F3,2,F4,2),(F2,1,F3,1,F4,1,F5,1)} 93 97 NS NS NS NS 

 

Summing up, LAHC appears to perform well on all the given configurations. In fact, 

LAHC gives the most optimal test cases for two cases. The first case involves the 

configuration with CCA(N,2,53,F{}) where F={(F1,2,F2,2), 

(F1,5,F3,3),(F1,5,F3,5),(F1,5,F2,4,F3,2),(F1,5,F2,3),(F1,2,F2,4)}. The second case involves the 

configuration with  CCA(N,4,35,F{}) where F={(F1,2,F2,2,F3,2,F4,2), (F2,1,F3,1,F4,1,F5,1)}. 

For the rest of the configuration, HSS appears to have the best overall results. SA_SAT, 

mAETG_SAT, and Test Cover also give optimal values for the first two configuration 

involving CCA(N,2,33,F{}) where F={(F2,3,F3,1),(F2,2,F3,1), 

(F1,1,F3,2),(F1,3,F2,4),(F1,3,F3,3),(F1,3,F2,3,F3,3)} and CCA(N,2,43,F{}) where 

F={(F1,1,F2,2),(F1,3,F3,4), (F1,4,F2,4,F3,1)(F1,3,F2,2)}. PICT appears to perform poorly on all 

the given configurations. 

 

 

8.0 CONCLUSION 

 

In short, this paper has elaborated a new strategy, called LAHC, based on the Late 

Acceptance Hill Climbing Algorithm. Our experience with LAHC has been promising. 

As the scope for future work, we are looking to tune LAHC to get better results. We are 

also looking to address adoption of LAHC for software product line testing.  

 

 

 

 



 

Journal of Engineering and Technology 
 

 

 

ISSN: 2180-3811   Vol. 6 No. 2 July-December 2015 

63 

 
 

ACKNOWLEDGMENT 

 

This research work involves collaborative efforts between Universiti Malaysia Pahang 

and Umm Al-Qura University. The work is funded by grant number 11-INF1674-10 

from the Long-Term National Plan for Science, Technology and Innovation (LT-

NPSTI), the King Abdul-Aziz City for Science and Technology (KACST), Kingdom of 

Saudi Arabia. We would like to thank the Innovation Office, Universiti Malaysia 

Pahang and the Science and Technology Unit at Umm Al-Qura University for their 

continued logistics support. Also, this research is partially funded by myGrants FRGS: 

Input-Output Relations Harmony Search T-way Testing Strategy, and UMP RDU Short 

Term Grants: Development of a Pairwise Testing Tool with Constraint and Seeding 

Support Based on an Optimization Algorithm. 

 

 

REFERENCES 

 

Alsewari, A. R. A., & Zamli, K. Z. (2012). Design and Implementation of a Harmony-

Search-based Variable-Strength t-way Testing Strategy with Constraints Support. 

Information and Software Technology, 54, 553-568.  

 

Ammann, P. E., & Offutt., A. J. (1994). Using Formal Methods To Derive Test Frames 

in Category-Partition Testing. 9th Annual Conference on Computer Assurance 

(COMPASS’94), Gaithersburg MD. 

 

Arshem, J. (2009). TVG  Retrieved from http://sourceforge.net/projects/tvg.  

 

Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997). The AETG System: 

An Approach to Testing Based on Combinatorial Design. IEEE Transactions on 

Software Engineering, 23(7), 437-444.  

 

Cohen, D. M., Dalal, S. R., Parelius, J., Patton, G. C., & Bellcore, N. J. (1996). The 

Combinatorial Design Approach to Automatic Test Generation. IEEE software, 

13(5), 83-88.  

 

Cohen, M. B. (2004). Designing Test Suites for Software Interaction Testing. Doctor of 

Philosophy PhD Thesis, University of Auckland, New Zealand.    

 

Cohen, M. B. (2004). Designing Test Suites for Software Interaction Testing (PhD 

Thesis). University of Auckland, Auckland.    

 

Cohen, M. B., Dwyer, M. B., & Shi, J. (2007). Exploiting Constraint Solving History to 

Construct Interaction Test Suites. Proceedings of the Testing: Academic and 

Industrial Conference Practice and Research Techniques - MUTATION, 2007, 

UK. 

 



 

Journal of Engineering and Technology 
 

 

 

ISSN: 2180-3811   Vol. 6 No. 2 July-December 2015 

64 

 
 

Cohen, M. B., Dwyer, M. B., & Shi, J. (2007). Interaction Testing of Highly-

Configurable Systems in the Presence of Constraints. International Symposium 

on Software Testing and Analysis (ISSTA2007), New York, USA. 

 

Cohen, M. B., Gibbons, P. B., Mugridge, W. B., & Colbourn, C. J. (2003). Constructing 

Test Suites for Interaction Testing. Proceedings of the 25th International 

Conference on Software Engineering, Portland, Oregon USA. 

Hartman, A., & Raskin, L. (2004). Problems and Algorithms for Covering Arrays. 

Discrete Mathematics, 284(1-3), 149-156.  

 

Hedayat, A. S., Sloane, N. J. A., & Stufken, J. (1999). Orthogonal Arrays: Theory and 

Applications. New York: Springer Verlag. 

 

Keith, & Doug, H. (2006). PICT  Retrieved from 

http://testmuse.wordpress.com/2006/04/05/pict-tool-available/2006.  

 

Klaib, M. F. J. (2009). Development Of An Automated Test Data Generation And 

Execution Strategy Using Combinatorial Approach. PhD, Universiti Sains 

Malaysia.    

 

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007). IPOG: A General 

Strategy for T-Way Software Testing. Proceedings of the 14th Annual IEEE  

International Conference and Workshops on the Engineering of Computer-

Based Systems, Tucson, AZ U.S.A. 

 

Malaiya, Y. K. (1996). Antirandom Testing: Getting The Most Out of Black-Box Testing. 

6th International Symposium on Software Reliability Engineering. 

 

Mandl, R. (1985). Orthogonal Latin Squares: An Application of Experiment Design to 

Compiler Testing. Communications of the ACM, 28(10), 1054-1058.  

 

Pallas, D. (2003). Jenny  Retrieved from http://www.burtleburtle.net/bob/math.  

 

Bryce, R. C., & Colbourn C. J. (2007). One-test-at-a-time heuristic search for 

interaction test suites. Proceedings of the 9th annual conference on Genetic and 

evolutionary computation, London, England.  

 

Sherwood., G. (2006a). Testcover  Retrieved fom http://testcover.com.  

 

Sherwood., G. (2006b). TestCover  Retrieved from 

http://testcover.com/pub/constex.php.  

 

Shiba, T., Tsuchiya, T., & Kikuno, T. (2004). Using Artificial Life Techniques to 

Generate Test Cases for Combinatorial Testing. Proceedings of the 28th Annual 

International Computer Software and Applications Conference. 

 



 

Journal of Engineering and Technology 
 

 

 

ISSN: 2180-3811   Vol. 6 No. 2 July-December 2015 

65 

 
 

Tung, Y. W., & Aldiwan, W. S. (2000). Automatic Test Case Generation For The New 

Generation Mission Software System. Proceedings of IEEE Aerospace 

Conference, Big Sky, MT, USA. 

 

Williams, A. W. (2000). Determination of Test Configurations for Pair-wise Interaction 

Coverage. Proceedings of the 13th International Conference on Testing of 

Communicating System, Ottawa, Canada. 

 

Williams, A. W. (2002). TConfig  Retrieved from http://www.site.uottawa.ca/~awilliam.  

 

Williams, A. W. (2010). TConfig  Retrieved from 

http://www.site.uottawa.ca/~awilliam/. 

 

Yan, J., & Zhang, J. (2006). Backtracking Algorithms And Search Heuristics To 

Generate Test Suites For Combinatorial Testing. Proceeding of the 30th Annual 

International Computer Software and Applications Conference. 

 

Yan, J., & Zhang, J. (2008). A Backtracking Search Tool for Constructing 

Combinatorial Test Suites. Journal of Systems and Software, 81(10), 1681-1693. 

  

Younis, M. I. (2010). MIPOG: A Parallel T-Way Minimization Strategy For 

Combinatorial Testing. PhD, Universiti Sains Malaysia.    

 

Younis, M. I., & Zamli, K. Z. (2010). MC-MIPOG: A Parallel T-Way Test Generation 

Strategy for Multicore Systems. ETRI Journal, 32(1), 73-83.  

 

Younis, M. I., Zamli, K. Z., & Isa, N. A. M. (2008). IRPS --- An Efficient Test Data 

Generation Strategy for Pairwise Testing. Proceedings of the 12th international 

conference on Knowledge-Based Intelligent Information and Engineering 

Systems, Part I, Zagreb, Croatia. 

 

Younis, M. I., Zamli, K. Z., & Isa, N. A. M. (2008a). MIPOG - Modification Of The 

IPOG Strategy For T-Way Software Testing. Proceeding of The Distributed 

Frameworks and Applications (DFmA), Penang, Malaysia. 

 

Younis, M. I., Zamli, K. Z., & Isa, N. A. M. (2008b). A Strategy For Grid Based T-Way 

Test Data Generation. Proceedings the 1st IEEE International Conference on 

Distributed Frameworks and Application (DFmA '08), Penang, Malaysia. 

 

Yu-Wen, T., & Aldiwan, W. S. (2000). Automating Test Case Generation for the New 

Generation Mission Software System. Proceedings of the IEEE Aerospace 

Conference, Big Sky, MT, USA. 

 

Zamli, K. Z., Klaib, M. F. J., Younis, M. I., Isa, N. A. M., & Abdullah, R. (2011). 

Design And Implementation of A T-Way Test Data Generation Strategy With 

Automated Execution Tool Support. Information Sciences, 181(9), 1741-1758  

 

http://www.site.uottawa.ca/~awilliam


 

Journal of Engineering and Technology 
 

 

 

ISSN: 2180-3811   Vol. 6 No. 2 July-December 2015 

66 

 
 

Zamli, K. Z., Othman, R. R., Younis, M. I., & Mohamed Zabil, M. H. (2011). Practical 

Adoptions of T-Way Strategies for Interaction Testing. In J. M. Zain, W. M. 

Wan Mohd & E. El-Qawasmeh (Eds.), Software Engineering and Computer 

Systems (Vol. 181, pp. 1-14): Springer Berlin Heidelberg. 

 


