

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

52

GENERATING T-WAY TEST SUITE IN THE PRESENCE OF CONSTRAINTS

A. R. Alsewari1*, K. Z. Zamli1, B. AL-Kazemi2

 1Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang,

26300 Kuantan, Pahang, Malaysia

 2College of Computer and Information Systems, Umm Al-Qura University,

Makkah, Kingdom of Saudi Arabia

ABSTRACT

 Interaction (t-way) testing is a common sampling strategy to minimize combinatorial

test data from large configuration space based on the defined interaction strength (t).

Here, all t-way strategies generate the t-way test suite with the aim to cover every

possible combination produced by the interacting parameters (or also known as tuples).

In many systems under test (SUT), there are some known combinations that are

impossible to occur based on the requirements set to the system. These combinations

(termed constraints) have to be excluded from the final test suite. This paper describes

the generation of t-way test suite using the Late Acceptance Hill Climbing based

Strategy (LAHC) in the presence of constraints. Our benchmarking results have been

promising as LAHC gives competitive results in many constraints configurations

considered.

KEYWORDS: Hill Climbing; late acceptance; combinatorial testing; optimizations

algorithms; test cases generatio; natural based algorithm

1.0 INTRODUCTION

Given potentially large possible input parameters, exhaustive testing of any typical

software is practically impossible. As such, many sampling based strategies (such as

random testing (Mandl, 1985), each-choice and base-choice (Ammann & Offutt., 1994),

and anti-random (Malaiya, 1996) have been proposed in the literature to help test

engineers in selecting a subset of test cases (i.e. from the exhaustive testing) that would

maximize the probability of fault detection. Despite of their usefulness, the

aforementioned strategies are not designed to tackle faults due to interaction. As such,

their applicability is deemed limited to certain types of faults.

Addressing these issues, researchers have turned into t-way strategies (Zamli, Othman,

Younis, & Zabil, 2011) whereby t indicates the interaction strength. Here, all the t-way

strategies generate t-way test suite with the aim to cover every possible combination

produced by the interacting parameters (or also known as tuples). In many systems

under test (SUT), there are some known combinations that are impossible to occur

based on the requirements set to the system. These combinations (termed constraints)

have to be excluded from the final test suite.

*Corresponding Email: alsewari@ump.edu.my

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

53

While many t-way strategies have been proposed in literature for the past 20 years (e.g.

GTWay (General T-Way) (Klaib, 2009; Zamli, Klaib, Younis, Isa, & Abdullah, 2011),

MIPOG (Modified In Parameter Order Generator) (Younis, 2010; Younis & Zamli,

2010; Younis, Zamli, & Isa, 2008a, 2008b), TConfig (Test Configuration) (William,

2010) & TCG (Test Case Generater) (Tung & Aldiwan, 2000)), few strategies have

sufficiently considered constraints during test generation process. In fact, HSS

(Harmony Search Strategy) (Alsewari & Zamli, 2012), PICT (Pairwise Independent

Combinatorial Testing) (Cohen, 2004), mAETG (Modefied Automatic Efficient Test

Generator) (Cohen, Dwyer, & Shi, 2007), SA (Simulated Annealing) (Cohen et al.,

2007) and TestCover (Sherwood., 2006a) are amongst the few known t-way strategies

that address constraints issues.

Complementing the existing works, this paper describes a novel strategy, called LAHC,

based on Late Acceptance Hill Climbing Algorithm that is capable of generating the t-

way test suite in the presence of constraints. The main contribution of the work is that it

is the first constraints supported t-way strategy that is developed based on the Late

Acceptance Hill Climbing Algorithm. Our benchmarking results have been promising

as LAHC gives competitive results in many constraints configurations considered.

Section 2 highlights covering array notation. Section 3 provides information on the

problem definition model. Section 4 describes the related works. Section 5 highlights

the general Late Acceptance Hill Climbing. Section 6 elaborates our developed strategy

based on the Late Acceptance Hill Climbing Algorithm. Section 7 describes our

evaluation experiments. Finally, Section 8 provides our conclusion and future work.

2.0 COVERING ARRAY NOTATIONS

Mathematically, t-way interaction test suite can be abstracted using the covering array

(CA) notations. Normally, the CA has four parameters; N, t, p, and v (i.e., CA (N, t, vp).

Here, the symbols p, v, and t are used to refer to the number of parameters, values, and

interaction strength for the CA, respectively. For example, CA (9, 2, 34) represents a test

suite consisting of 9x4 arrays (i.e., the rows represent the size of test cases (N), and the

column represents the parameter (p)). In this case, the test suite also covers two-way

interaction for a system with four 3-value parameters.

Similar to CA, mixed covering array (MCA) has three parameters; N, t, and

Configuration (C) (i.e., MCA (N, t, C)). In addition to N and t that carry the same

meaning as in CA, MCA adopts a new symbol, C. Consistent with the earlier given

notations, C represents the parameters and values of each configuration in the following

format: v1 p1 v2 p2… vn pn indicating that there are p1 parameters with v1 values, p2

parameters with v2 values, and so on. For example, MCA (1265, 4, 102 41 32 27)

indicates the test size of 1265 that covers four-way interaction. Here, the configuration

takes 12 parameters: two 10-value parameters, one 4-value parameter, two 3-value

parameters, and seven 2-value parameters.

To cater for constraints covering array (CCA) or mixed-constraints covering array

(MCCA); a new variable called forbidden (F) interaction is introduced to represent the

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

54

set of disallowed interactions (i.e., CA (N, t, vp, F) or MCCA (N, t, C, F)). Here, F takes

the following format {Fa,b} where a indicates the pth parameter and b indicates the vth

value are within the list of constraints. For example, consider CCA (10, 2, 33, F) where

F = {F1,1,F3,1}. In this case, the CCA indicates the test size of 10 for pairwise interaction

of three 3-value parameters with constraints pair interaction elements from parameter 1

and value 1, as well as parameter 3 and value 1.

3.0 PROBLEM DEFINITION MODEL

To illustrate the problem of t-way testing and constraints, a simplified-pizza-ordering

system will be elaborated based on the example in (Alsewari & Zamli, 2012). The

simplified-pizza-ordering system takes five parameters as follows (see Table 1).

Table 1. Simplified-pizza-ordering System

Pizza Type

(P1)

Crust

(P2)

Toppings

(P3)

Size

(P4)

Delivery

(P5)

Vegetarian Cheese Thin Crust Roasted Chicken Large Eat In

Meat Lover Extra Thick Ground Beef Medium Take Away

 Mushroom Small

Here, Pizza Type, Toppings and Size take 3 possible values whilst Crust and Delivery

take 2 possible values. Exhaustive testing of all possible interactions for the

aforementioned pizza ordering system requires 2 × 2 × 3 × 3 × 2 = 72 test cases. Now,

pairwise (2-way) interactions can be tested using 9 test cases as shown in Table 2.

Table 2. Pairwise Test Suite for CA (N, 2, 23
 32)

No Pizza Type Crust Toppings Size Delivery

1 Vegetarian

Cheese

Thin Crust Roasted Chicken Small Take Away

2 Meat Lover Extra Thick Mushroom Small Eat In

3 Vegetarian

Cheese

Extra Thick Ground Beef Large Take Away

4 Meat Lover Thin Crust Ground Beef Medium Eat In

5 Vegetarian

Cheese

Thin Crust Mushroom Large Eat In

6 Meat Lover Extra Thick Roasted Chicken Medium Take Away

7 Vegetarian

Cheese

Thin Crust Mushroom Medium Take Away

8 Meat Lover Extra Thick Roasted Chicken Large Eat In

9 Meat Lover Thin Crust Ground Beef Small Eat In

Referring to Table 2, it can be deduced that each 2-way interaction between parameters

are covered at most once (indicating that the given result is the most optimal one).

Nonetheless, there exist a number of constraints. The pair interactions between Pizza

Type (Vegetarian) and Topping (Ground Beef, Roasted Chicken) are impossible, hence,

must be forbidden. By the same token, pair interaction between Pizza Type (Meat

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

55

Lover) and Toppings (Mushroom) is also forbidden. Using the mixed-constraints

covering array notation discussed earlier, the system configuration can be formally

expressed as CA (N, 2, 23 32, F), where F= {(F1,1,F3,1), (F1,1,F3,2), (F1,2,F3,3)}.

Considering these constraints, the correct representation of CA is given in Table 3.

The results in Table 3 faithfully forbid the given constraints. Hence, the 2-way

interactions (Pizza Type <<>> Topping) featuring Vegetarian Cheese will only cover

Mushroom whilst the two way interactions featuring Meat Lover can take both Roasted

Chicken as well as Ground Beef.

Table 3.

Pairwise Test Suite for CA (N, 2, 23
 32, F), where F= {(F1,1,F3,1), (F1,1,F3,2), (F1,2,F3,3)}

No Pizza Type Crust Toppings Size Delivery

1 Vegetarian

Cheese

Extra Thick Mushroom Medium Take Away

2 Meat Lover Thin Crust Roasted Chicken Large Take Away

3 Meat Lover Extra Thick Ground Beef Medium Eat In

4 Vegetarian

Cheese

Thin Crust Mushroom Small Eat In

5 Meat Lover Extra Thick Roasted Chicken Medium Eat In

6 Meat Lover Thin Crust Ground Beef Medium Take Away

7 Vegetarian

Cheese

Extra Thick Mushroom Large Eat In

8 Meat Lover Extra Thick Roasted Chicken Small Take Away

9 Meat Lover Thin Crust Ground Beef Large Take Away

4.0 RELATED WORK

In general, existing t-way strategies can be categorized into two categories based on the

dominant approaches, that are, algebraic approaches or computational approaches

respectively (Lei, Kacker, Kuhn, Okun, & Lawrence, 2007).

Algebraic approaches construct test sets using pre-defined rules or mathematical

function (Lei et al., 2007). Often, the computations involved in algebraic approaches are

typically lightweight, and in some cases, algebraic approaches can produce the most

optimal test sets. However, the applicability of algebraic approaches is often restricted

to small configurations (Lei et al., 2007; Yan & Zhang, 2006). Orthogonal Arrays (OA)

(Hartman & Raskin, 2004; Hedayat, Sloane, & Stufken, 1999), MOA (Mandl, 1985)

and TConfig (Williams, 2002) are typical example of the strategies that are based on

algebraic approach.

Unlike algebraic approaches, computational approaches often rely on the generation of

all-pair combinations. Based on the all-pair combinations, the computational approaches

iteratively search the combinations space to generate the required test case until all pairs

have been covered. In this manner, computational approaches can ideally be applicable

even in large system configurations. However, in the case where the number of pairs to

be considered is significantly large, adopting computational approaches can be

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

56

expensive due to the need to consider explicit enumeration from all the combination

space. Example of strategies that adopt this approach includes An Automatic Efficient

Test Generator (AETG) (Cohen, Dalal, Fredman, & Patton, 1997; Cohen, Dalal,

Parelius, Patton, & Bellcore, 1996), its variant (mAETG) (Cohen, 2004), PICT (Keith

& Doug, 2006), IPOG (Lei et al., 2007), Jenny (Pallas, 2003), TVG (Arshem, 2009; Yu-

Wen & Aldiwan, 2000), IRPS (Younis, Zamli, & Isa, 2008), GA (Shiba, Tsuchiya, &

Kikuno, 2004), ACA (Shiba et al., 2004), and SA (Jun Yan & Zhang).

Despite of their usefulness, much of the aforementioned strategies do not provide the

support for constraints. Hence, in line with the scope of the paper, what follows is the

review of strategies that addresses the problem of constraints.

Automatic Efficient Test Generator (or AETG) (Cohen et al., 1997; Cohen et al., 1996)

and employ a greedy search algorithm based on 2-way interaction pairing in order to

generate the final test suite. In this manner, the generated test case is highly non-

deterministic. A number of variations of AETG have been developed over the years,

including AETGm and mAETG_SAT (M.B. Cohen, M.B. Dwyer, & Jiangfan Shi,

2007). Unlike AETG and AETGm, mAETG_SAT provides the support for constraints

through its forbidden tuple implementation.

PICT (Keith & Doug, 2006) generates all specified interaction tuples and randomly

selects their corresponding interaction combinations to form the test cases as part of the

complete test suite. In case a particular test case matches a specified constraint, PICT

randomly generates a new combination for covering the interaction tuples. Due to its

random behaviour, PICT tends to give a non-optimal test size as compared to other

strategies.

TestCover (Sherwood., 2006b) is a commercial t-way strategy implementation. No

implementation details have been published in the literature apart from a list of

benchmark configurations on constraints that can be obtained from its website.

SA (Cohen, Gibbons, Mugridge, & Colbourn, 2003) relies on a large random search

space for generating a t-way test suite. Using probability-based transformation

equations, SA adopts binary search algorithm to find the best test case per iteration to be

added to the final test suite. SA addresses constraints support through its variant

strategy, called SA_SAT Cohen (2009).

HSS (Alsewari & Zamli, 2012) is perhaps the most recent t-way strategy that addresses

the constraints problem for the t-way test suite generation. Based on the Harmony

Search Algorithm, HSS adopts two probability values (i.e. the considering rate and pitch

adjustment rate). Here, global search is iteratively performed by randomizing values in

the Harmony memory whereby the local best value can be selected given a considering

rate probability. Here, local best value can be considered for improvements for further

improvements in the local search (i.e. with pitch adjustment probability). At each

iteration, the best value will be added to the final test suite (provided that they do not

cover constraints) until all the required interactions are covered.

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

57

5.0 LATE ACCEPTANCE HILL CLIMBING ALGORITHM

Late Acceptance Hill Climbing Algorithm is started from a randomly generated

potential solutions captured in to the LAHC memory (in the form of list with fixed

length). LAHC then generates a current neighbour to be compared one-value-at-a-time

with the corresponding value from the LAHC memory. LAHC also maintains the

previous cost function in the memory to allow selection of the best fit value. Ideally, the

candidate cost is compared with the selected ith cost from the memory. If the cost is not

worse, the candidate will be accepted (as the current local best). Upon acceptance, the

cost of the new current solution will be made to replace the original ith cost from the

memory. Here, the list keeps the fitness array Fa of length Lfa (Fa = {f0, f1,f2..fLfa-1}). The

position v, at the ith iteration can be calculated via:

where mod represents the remainder of the integer division

Assuming minimization problem, the final acceptance condition at ith iteration can be

expressed as:

where = the candidate cost; = the current cost; = the cost of the current

Lfa iteration before

The complete pseudo code for LAHC can be summarised in Figure 1.

Produce an initial solution s

Calculate initial cost function C(s)

Specify Lfa

for all k ϵ {0...Lfa-1}

 begin

 s=random(s)

 fk := C(s)

 end

Assign the initial iteration I:= 0;

While not a chosen stopping condition is met

 Construct a candidate solution s*

 Evaluate its cost function C(s*)

 v :=I mod Lfa

 if C(s*)≤ fv or C(s*)≤ C(s)

 then accept candidate (s :=s*)

 Insert cost value into the list fv:= C(s)

 Increment the iteration I:= I+1

end while

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

58

Figure 1. General Purpose LAHC Algorithm

6.0 ADAPTING LATE ACCEPTANCE HILL CLIMBING ALGORITHM

FOR T-WAY TEST GENERATION

The optimization problem of concerned can be specified using on Equations (3 and 4).

Subject to

where is an objective function capturing the weight of the test case in terms of the

number of covered interactions; x is the set of each decision variable is the set

of possible range of values for each decision variable, that

is, for discrete decision variables

(); N is the number of decision parameters; and is the

number of possible values for the discrete variables.

Addressing the aforementioned optimization problem, our LAHC strategy works as

follows.

A. Parameter Initialization

Firstly, the LAHC accepts the input parameters and their corresponding values. Then,

the LAHC generates the interactions list IL containing all interactions tuple

combinations for each pair which later forms the objective function. Apart from

accepting input parameters and their values, LAHC also needs to initialize the size and

values of Lfa as well as the number of iteration, M.

Owing to the need to generate a population of interaction test cases as opposed to single

optimization problem, there is a need to modify the structure of Lfa as well as to add the

number of iteration into the original LAHC. In this case, it is proposed that Lfa keeps

both the cost function value as well as its corresponding candidate solution. Here, when

LAHC decides to accept the solution in Lfa, it can immediately use that solution as the

basis for the next neighbourhood solution (i.e. for local search).

As the name suggests, M specifies the number of iteration for improving Lfa. Here, the

value of M must be greater than or equal to the size of Lfa (M≥Lfa size), that is, to ensure

that all the values in Lfa are visited at least once (see equation 1).

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

59

B. Diversification and Intensification

To achieve optimal solution, there is a need for sufficiently elaborate local and global

search via exploiting the diversification and intensification property of the algorithm of

interest.

Within the general purpose LAHC algorithm, diversification for global search is

appropriately addressed by the generation of random initial solution within the Lfa list.

However, the intensification element within the local search is missing.

Addressing this intensification issue, there is a need for a good perturbation function

which can “slightly” modify the current local best solution to get better solution (see

Figure 2). For instance, consider a solution candidate, (see Equation (5)):

) (5)

If range values is {0, 1, 2, 3, 4, 5}, and the new in the Lfa has the value of {3}

then this value can be moved to the neighbouring value {4}. To ensure that only slight

modification is done, we introduce two probability value called Pchange and Pdirection

respectively. Here if both Pchange =0.5 and Pdirection = 0.5, there is only 50% chance of

 to be changed or remained. Now, if is going to be changed, it can have equal

chance of changing either in the lower, upper, or combination of both directions.

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

60

function Pertubate (solution s)

 begin

 for all i ϵ {0...length (s)}

 begin

 with probability, Pchange= 0.5

 begin

 with probability, P direction = 0.5

 if (Pdirection<0.5) // move down

 begin
 if xi = max value range

 xi := xi -1

 else

 xi := xi +1

 end

 else //move up

 begin

 if xi = min value range

 xi := xi +1

 else

 xi := xi -1

 end

 end

 update s(xi)

 end

 end

 return (s);

 end

Figure 2. Probabilistic Pertubation Function

At first sight, the approach of adopting two probabilistic values in LAHC appears

similar to HSS. A closer look reveals some fundamental differences. Firstly, in HSS, the

two probabilistic values are used to decide whether or not to use a random value or a

value from memory for improvisation as well as whether or not to do pitch adjustment

of the current values. Within LAHC, Pchange is used to decide whether to pertubate the

current values much like the pitch adjustment in HSS.However, the use Pdirection is

completely different. In LAHC, Pdirection is used to decide on the direction of the

neighbourhood search and not on the use of a random value or any existing value from

memory.

C. Control Loop with Interaction Coverage iteration, M iteration and Lfa Memory

Update

Using the general Late Acceptance Hill Climbing algorithm with the aforementioned

perturbation function, the complete LAHC strategy can be summarised in Figure 3.

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

61

Define interactions to cover list, L

Define the constraints list, F

Produce an initial solution s

Calculate initial cost function C(s)

 Specify Lfa, and iteration M

 Populate F with constraints

 while L is not empty

 begin

 /////////////////// diversification ///////////////////

 for all k ϵ {0...Lfa-1} do randomize fk := s,C(s)

 Assign the initial number of iteration I:= 0;

 do until I=M

 Construct a candidate solution s* based on at

 least 1 uncovered pair

 Calculate its cost function C(s*)

 v :=I mod Lfa

 if C(s*)≤ fv or C(s*)≤ C(s)

 then accept candidate (s :=s*)

 /////////////////// intensification ///////////////////

 s:=pertubate (s)

 if C(s)> fworst

 Replace the worst solution in Lfa , fworst:= s,C(s)

 Increment the number of iteration I:= I+1

 end do

 Pick the best s from Lfa not in F

 If exist best s not violating F

 Add best s to the final suite

 Reset Lfa for the next iteration

 end

Figure 3. LAHC Strategy

Here, the internal M iteration loop will iteratively update Lfa with the local best value.

Here, an index of the worst solution in Lfa is kept internally to facilitate the update of Lfa.

Upon completion of the M iteration, the local best solution (with the best Cs) will be

taken into the final test suite. Here, LAHC maintains the list of constraints as forbidden

list in order to make sure that the local best solution does not contain the constraints

tuple. If so, new test value will be generated accordingly. The main iteration loop will

stop when all the interactions are covered.

7.0 EVALUATION EXPERIMENTS

In this section, we used other existing strategies that support constraints using the

experiments described by (Alsewari & Zamli, 2012; Cohen, 2004) as the benchmarking

for LAHC. For our experiments, we have used Lfa = 100, Pchange=0.2, Pdirection=0.5, and

M iteration =1000 for all the experiments. Here, we report the best results after 20 runs

for statistical significance. Table 4 summarizes the results. Here, the best generated

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

62

results are highlighted in bold font. Entries marked with Not Supported (NS) indicates

that the configurations are not supported by the given strategy implemented.

Table 4.

Comparison in Terms of the Test Suite Size for Nine System Configurations in the

Presence of Constraints

N CCA
LAH

C

HS

S

SA_SA

T

mATEG_S

AT

PIC

T

TestCov

er

1 CCA(N, 2,33,F{}) 9 9 9 9 10 9

F={(F2,3,F3,1),(F2,2,F3,1),(F1,1,F3,2),(F1,3,F2,4)(F1,3,F3,3),(F1,3,F2,3,F

3,3)}

10 10 10 10 10 10

2 CCA(N, 2,43,F{}) 16 16 16 16 17 16

F={(F1,1,F2,2),(F1,3,F3,4),(F1,4,F2,4,F3,1)(F1,3,F2,2)} 17 16 17 17 19 17

3 CCA(N, 2,53,F{}) 25 25 25 25 26 25

F={(F1,2,F2,2),(F1,5,F3,3),(F1,5,F3,5),(F1,5,F2,4,F3,2),(F1,5,F2,3),(F1,2,

F2,4)}

25 26 26 26 27 30

4 CCA(N, 2,63,F{}) 38 36 36 37 39 36

F={(F1,4,F2,6),(F2,4,F3,5),(F1,3,F2,1),(F2,2,F3,3),(F1,4,F3,2),(F2,4,F3,2),

(F1,6,F2,5,F3,5)}

36 36 36 37 39 38

5 CCA(N, 2,73,F{}) 51 49 49 52 55 49

F={(F2,1,F3,6),(F1,6,F2,6,F3,4),(F1,5,F3,1),(F1,7,F2,5),(F1,2,F2,5),(F1,7,

F2,4)}

53 51 52 52 56 54

6 CCA(N, 3,54,F{}) 145 138 127 143 151 NS

F={(F1,4,F3,3,F4,2),(F2,2,F4,4),(F1,3,F2,4),(F1,2,F3,4)} 141 139 140 138 143 NS

7 CCA(N, 3,64,F{}) 253 240 222 247 260 NS

F={(F1,5,F4,3),(F3,4,F4,2),(F2,3,F4,3),(F2,2,F3,3)} 245 238 251 241 250 NS

8 CCA(N, 3,74,F{}) 409 377 351 395 413 NS

F={(F2,3,F3,7),(F2,6,F3,7),(F2,5,F3,3),(F4,2,F4,6)(F3,3,F4,5),(F1,3,F3,7)} 395 377 438 383 401 NS

9 CCA(N, 4,35,F{}) 94 89 NS NS NS NS

F={(F1,2,F2,2,F3,2,F4,2),(F2,1,F3,1,F4,1,F5,1)} 93 97 NS NS NS NS

Summing up, LAHC appears to perform well on all the given configurations. In fact,

LAHC gives the most optimal test cases for two cases. The first case involves the

configuration with CCA(N,2,53,F{}) where F={(F1,2,F2,2),

(F1,5,F3,3),(F1,5,F3,5),(F1,5,F2,4,F3,2),(F1,5,F2,3),(F1,2,F2,4)}. The second case involves the

configuration with CCA(N,4,35,F{}) where F={(F1,2,F2,2,F3,2,F4,2), (F2,1,F3,1,F4,1,F5,1)}.

For the rest of the configuration, HSS appears to have the best overall results. SA_SAT,

mAETG_SAT, and Test Cover also give optimal values for the first two configuration

involving CCA(N,2,33,F{}) where F={(F2,3,F3,1),(F2,2,F3,1),

(F1,1,F3,2),(F1,3,F2,4),(F1,3,F3,3),(F1,3,F2,3,F3,3)} and CCA(N,2,43,F{}) where

F={(F1,1,F2,2),(F1,3,F3,4), (F1,4,F2,4,F3,1)(F1,3,F2,2)}. PICT appears to perform poorly on all

the given configurations.

8.0 CONCLUSION

In short, this paper has elaborated a new strategy, called LAHC, based on the Late

Acceptance Hill Climbing Algorithm. Our experience with LAHC has been promising.

As the scope for future work, we are looking to tune LAHC to get better results. We are

also looking to address adoption of LAHC for software product line testing.

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

63

ACKNOWLEDGMENT

This research work involves collaborative efforts between Universiti Malaysia Pahang

and Umm Al-Qura University. The work is funded by grant number 11-INF1674-10

from the Long-Term National Plan for Science, Technology and Innovation (LT-

NPSTI), the King Abdul-Aziz City for Science and Technology (KACST), Kingdom of

Saudi Arabia. We would like to thank the Innovation Office, Universiti Malaysia

Pahang and the Science and Technology Unit at Umm Al-Qura University for their

continued logistics support. Also, this research is partially funded by myGrants FRGS:

Input-Output Relations Harmony Search T-way Testing Strategy, and UMP RDU Short

Term Grants: Development of a Pairwise Testing Tool with Constraint and Seeding

Support Based on an Optimization Algorithm.

REFERENCES

Alsewari, A. R. A., & Zamli, K. Z. (2012). Design and Implementation of a Harmony-

Search-based Variable-Strength t-way Testing Strategy with Constraints Support.

Information and Software Technology, 54, 553-568.

Ammann, P. E., & Offutt., A. J. (1994). Using Formal Methods To Derive Test Frames

in Category-Partition Testing. 9th Annual Conference on Computer Assurance

(COMPASS’94), Gaithersburg MD.

Arshem, J. (2009). TVG Retrieved from http://sourceforge.net/projects/tvg.

Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997). The AETG System:

An Approach to Testing Based on Combinatorial Design. IEEE Transactions on

Software Engineering, 23(7), 437-444.

Cohen, D. M., Dalal, S. R., Parelius, J., Patton, G. C., & Bellcore, N. J. (1996). The

Combinatorial Design Approach to Automatic Test Generation. IEEE software,

13(5), 83-88.

Cohen, M. B. (2004). Designing Test Suites for Software Interaction Testing. Doctor of

Philosophy PhD Thesis, University of Auckland, New Zealand.

Cohen, M. B. (2004). Designing Test Suites for Software Interaction Testing (PhD

Thesis). University of Auckland, Auckland.

Cohen, M. B., Dwyer, M. B., & Shi, J. (2007). Exploiting Constraint Solving History to

Construct Interaction Test Suites. Proceedings of the Testing: Academic and

Industrial Conference Practice and Research Techniques - MUTATION, 2007,

UK.

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

64

Cohen, M. B., Dwyer, M. B., & Shi, J. (2007). Interaction Testing of Highly-

Configurable Systems in the Presence of Constraints. International Symposium

on Software Testing and Analysis (ISSTA2007), New York, USA.

Cohen, M. B., Gibbons, P. B., Mugridge, W. B., & Colbourn, C. J. (2003). Constructing

Test Suites for Interaction Testing. Proceedings of the 25th International

Conference on Software Engineering, Portland, Oregon USA.

Hartman, A., & Raskin, L. (2004). Problems and Algorithms for Covering Arrays.

Discrete Mathematics, 284(1-3), 149-156.

Hedayat, A. S., Sloane, N. J. A., & Stufken, J. (1999). Orthogonal Arrays: Theory and

Applications. New York: Springer Verlag.

Keith, & Doug, H. (2006). PICT Retrieved from

http://testmuse.wordpress.com/2006/04/05/pict-tool-available/2006.

Klaib, M. F. J. (2009). Development Of An Automated Test Data Generation And

Execution Strategy Using Combinatorial Approach. PhD, Universiti Sains

Malaysia.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007). IPOG: A General

Strategy for T-Way Software Testing. Proceedings of the 14th Annual IEEE

International Conference and Workshops on the Engineering of Computer-

Based Systems, Tucson, AZ U.S.A.

Malaiya, Y. K. (1996). Antirandom Testing: Getting The Most Out of Black-Box Testing.

6th International Symposium on Software Reliability Engineering.

Mandl, R. (1985). Orthogonal Latin Squares: An Application of Experiment Design to

Compiler Testing. Communications of the ACM, 28(10), 1054-1058.

Pallas, D. (2003). Jenny Retrieved from http://www.burtleburtle.net/bob/math.

Bryce, R. C., & Colbourn C. J. (2007). One-test-at-a-time heuristic search for

interaction test suites. Proceedings of the 9th annual conference on Genetic and

evolutionary computation, London, England.

Sherwood., G. (2006a). Testcover Retrieved fom http://testcover.com.

Sherwood., G. (2006b). TestCover Retrieved from

http://testcover.com/pub/constex.php.

Shiba, T., Tsuchiya, T., & Kikuno, T. (2004). Using Artificial Life Techniques to

Generate Test Cases for Combinatorial Testing. Proceedings of the 28th Annual

International Computer Software and Applications Conference.

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

65

Tung, Y. W., & Aldiwan, W. S. (2000). Automatic Test Case Generation For The New

Generation Mission Software System. Proceedings of IEEE Aerospace

Conference, Big Sky, MT, USA.

Williams, A. W. (2000). Determination of Test Configurations for Pair-wise Interaction

Coverage. Proceedings of the 13th International Conference on Testing of

Communicating System, Ottawa, Canada.

Williams, A. W. (2002). TConfig Retrieved from http://www.site.uottawa.ca/~awilliam.

Williams, A. W. (2010). TConfig Retrieved from

http://www.site.uottawa.ca/~awilliam/.

Yan, J., & Zhang, J. (2006). Backtracking Algorithms And Search Heuristics To

Generate Test Suites For Combinatorial Testing. Proceeding of the 30th Annual

International Computer Software and Applications Conference.

Yan, J., & Zhang, J. (2008). A Backtracking Search Tool for Constructing

Combinatorial Test Suites. Journal of Systems and Software, 81(10), 1681-1693.

Younis, M. I. (2010). MIPOG: A Parallel T-Way Minimization Strategy For

Combinatorial Testing. PhD, Universiti Sains Malaysia.

Younis, M. I., & Zamli, K. Z. (2010). MC-MIPOG: A Parallel T-Way Test Generation

Strategy for Multicore Systems. ETRI Journal, 32(1), 73-83.

Younis, M. I., Zamli, K. Z., & Isa, N. A. M. (2008). IRPS --- An Efficient Test Data

Generation Strategy for Pairwise Testing. Proceedings of the 12th international

conference on Knowledge-Based Intelligent Information and Engineering

Systems, Part I, Zagreb, Croatia.

Younis, M. I., Zamli, K. Z., & Isa, N. A. M. (2008a). MIPOG - Modification Of The

IPOG Strategy For T-Way Software Testing. Proceeding of The Distributed

Frameworks and Applications (DFmA), Penang, Malaysia.

Younis, M. I., Zamli, K. Z., & Isa, N. A. M. (2008b). A Strategy For Grid Based T-Way

Test Data Generation. Proceedings the 1st IEEE International Conference on

Distributed Frameworks and Application (DFmA '08), Penang, Malaysia.

Yu-Wen, T., & Aldiwan, W. S. (2000). Automating Test Case Generation for the New

Generation Mission Software System. Proceedings of the IEEE Aerospace

Conference, Big Sky, MT, USA.

Zamli, K. Z., Klaib, M. F. J., Younis, M. I., Isa, N. A. M., & Abdullah, R. (2011).

Design And Implementation of A T-Way Test Data Generation Strategy With

Automated Execution Tool Support. Information Sciences, 181(9), 1741-1758

http://www.site.uottawa.ca/~awilliam

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 6 No. 2 July-December 2015

66

Zamli, K. Z., Othman, R. R., Younis, M. I., & Mohamed Zabil, M. H. (2011). Practical

Adoptions of T-Way Strategies for Interaction Testing. In J. M. Zain, W. M.

Wan Mohd & E. El-Qawasmeh (Eds.), Software Engineering and Computer

Systems (Vol. 181, pp. 1-14): Springer Berlin Heidelberg.

