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ABSTRACT

Heart disease is one of the trivial issues regarding health problems over the last few decades in 
India. Numerous methods have been developed with still-ongoing modifications and ideas to 
observe and evaluate ECG signals based on each heart beat. The majority of research revolves 
around arrhythmia classification, heart rate monitoring and blood pressure measurements that 
require highly accurate assessments of rhythm disorders which can be possible by measuring 
QRS complex of ECG signals, so accurate QRS detection methods are very important to 
be utilized. There have been proposed many approaches to find out the R peak detection to 
analyze the ECG signals in the past few years. Most recent and efficient techniques of R peak 
detection have been reviewed in this paper. Techniques which have been reviewed in this paper 
are Pan and Tompkins, Wavelet Transform, Empirical Mode Decomposition, Hilbert-Huang 
Transform, Fuzzy logic systems, Artificial neural networks.

KEYWORDS: ECG; QRS complex; R peak and ANN; Wavelet Transform; 
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1.0 INTRODUCTION

An electrocardiogram (ECG or EKG) also known as heart waves which 
measures the heart’s electrical activity over the time with respect to different 
reference planes. To analyze the heart problems a very popular method used 
is ECG. Every heart contraction produces an electrical impulse which can be 
registered and recorded efficiently by placing the knobs on the human body 
(Trivedi P., and Ayub S., 2014). The heartbeat produces a series of waves 
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with a time-variant morphology which can be easily calculated by counting 
these detectable peaks. The ECG is a part of bioelectric signal, which provides 
important and relevant information about the heart state (Sahoo SK,et al.,2016),.  
Based on the difference in position, chest configuration, anatomy of the heart, 
age, size, relative body weight and various other factors, ECG of every person 
is different (Rodriguez R, et al.2015). Physicians all over the world are using the 
ECG to detect or anomalies.
 
As shown in the Figure 1 each beat consists of three different waves, P 
wave (atrial depolarization), QRS (ventricular depolarization) and finally 
T wave (ventricular repolarization). In the ECG signal, these three waves 
are continuously repeated, representing heartbeats and clinical status of the 
activity of the heart over the time. R wave has the highest amplitude in heart 
signal than the other portions (Singh Vikramjit, et.al., 2014). The ECG voltage 
level fall in the range 0.05 to 5mV and the frequency components of the ECG 
signals lies in the band 0.05 to 100Hz for a normal subject. 
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Figure 1. Normal ECG signal, made of P wave, QRS complex and T wave  

(Mujeeb Rahma and Mohamed Nasor,2012). 
 

1.1 Amplitude 
 
P-wave: represents the contraction of the atria —   0.25 mV 
R-wave — 1.60 mV        
Q-wave — 25% R wave 
T-wave — is the relaxation of ventricles 0.1 to 0.5 mV 
QRS complex: the current generated when the ventricles depolarize that results in 
contraction of the right and left ventricles (Oweis Rami J. and Al-Tabbaa Basim O., 
2014). 
 

Table 1. Amplitude and time intervals between different segments of ECG 
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the heart rate is called Arrhythmia which can be broadly classified in two categories based 
on R-R interval i.e. Bradycardia and Tachycardia. If heart rate is slow or below 60 beats 
/min and the distance RR> 1.2 s during activity, then Bradycardia occurs and if the heart 
rate is high or above 100 beats /min and the distance RR <0.6 s, this indicates a disorder 
called Tachycardia (Mujeeb Rahma and Mohamed Nasor, 2012).  The QRS complex is 
having most of the energy of heartbeats, so, an accurate determination of the QRS 
complex is essential for ECG analysis, in particular, accurate and efficient R peak 
detection in the analysis of computer-based ECG.  
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change in the heart rate is called Arrhythmia which can be broadly classified in 
two categories based on R-R interval i.e. Bradycardia and Tachycardia. If heart 
rate is slow or below 60 beats /min and the distance RR> 1.2 s during activity, 
then Bradycardia occurs and if the heart rate is high or above 100 beats /min 
and the distance RR <0.6 s, this indicates a disorder called Tachycardia (Mujeeb 
Rahma and Mohamed Nasor, 2012).  The QRS complex is having most of the 
energy of heartbeats, so, an accurate determination of the QRS complex is 
essential for ECG analysis, in particular, accurate and efficient R peak detection 
in the analysis of computer-based ECG. 

As R peak has higher amplitude than other portions of the ECG signal, 
hence R peak detection is easier than others. In most of the R Peak detection 
algorithms there are three differentiated stages: First stage is carried out the 
data acquisition process. In this process the MIT-BIH database is considered as 
a reference for ECG signals (MIT–BIH Arrhythmia Database Directory, 1992). 
Second is preprocessing stage where different techniques are applied to the 
signal to remove the noise and any existing artifact and the third stage is the 
suppression stage which is used to suppress the waves in ECG signal except 
the R-peaks and labeling them with their time of occurrence. 

1.2 Literature Review

During last many years, various methods have been developed for R peak 
detection. Numerous R peak detection algorithms based on the filtering 
techniques (Dhir J.S, Panag N.K.,2014), empirical mode decomposition (EMD) 
(Tyagi Shivi and Patil Mahendra Kumar, 2013), wavelet transform (Jenkal W, 
et al.,2016), derivatives (Falconi Arteaga, et.al., 2015) genetic algorithms (Das, 



ISSN: 2180-3811         Vol. 8     No. 2    July - December 2017

Journal of Engineering and Technology 

118

et al., 2013 and Li Hongqiang, et.al.,2017), Hilbert transform (Prasad S.T. and 
Dr. Varadarajan S., 2013), artificial neural networks (Izzah T.A. et al. 2013 and 
Mohamed B, et al., 2015) and hybrid approach (Meyer C., et.al., 2006), Markov 
models (Andreao R. V., et al., 2006),etc. represented in literature have been 
developed to detect R peaks. The decision rules and filtering techniques based 
methods are very adequate so suitable for all ECG analysis (Arzeno N.M., 
et al.,2008). Many designs constitute of a preprocessing or feature extraction 
stages and then a decision block (Kohler B. U., 2002). To emphasize the QRS 
complex several signal processing approaches are applied in preprocessing 
stage, which also suppresses the noises but these methods have few drawbacks. 
The Empirical mode decomposition in (Hongyan X. and Minsong H.,2008) 
can overcome the problem to select the mother wavelet in Wavelet based QRS 
detection method, but under noisy situations it is very tough to choose the set 
of intrinsic mode functions (IMF). By offering more useful filtering technique 
and threshold modification methods performance can be improved (Hongyan 
X. and Minsong H.,2008). In subsequent years various modifications have been 
done on the method of Pan Tompkins. The high pass filter and differentiator in 
Pan Tompkins’ algorithm are replaced with a Savitzky-Golay filter in a novel 
Pan Tompkins algorithm (Pan J. and Tompkins W.J.,1985)

2.0 R PEAK DETECTION METHODS

R peak detection techniques have been investigated for several decades. 
Many techniques related to this area of research for R peak detection have 
been proposed for accurate and fast ECG feature extraction. There are various 
methods for R peak detection. Some recent and efficient techniques are 
reviewed and discussed in the following sections:
● Pan and Tompkins. 
● Wavelet Transform. 
● Empirical Mode Decomposition 
● Hilbert-Huang Transform 
● Fuzzy logic systems. 
● Artificial neural networks. 
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2.1 Pan and Tompkins 

Pan and Tompkins (PT) is very popular algorithm for R peak detection and 
its block diagram is shown in Figure 2. It is also known as the low-pass 
differentiation algorithm (LPD). In this algorithm QRS complex is detected 
depending on slope, amplitude and width. The QRS detection technique 
is divided into three different stages: linear digital filtering, non-linear 
transformations, and decision rule algorithms. In the first step algorithm 
passes the signal through a band pass filter cascaded into a low-pass and a 
high-pass filter configuration. The low-pass filter is used to limit the operating 
range of an ECG signal and also to reduce higher frequency noise effects 
while the high-pass filter is used to highlight the onset of each QRS complex 
(Oweis, R. J., & Abdulhay, E. W., 2011). The band-pass filter reduces undesired 
interferences such as the influence of the muscle noise, the baseline wander, 
the power line interference and frequency noise impacts. After filtration by 
an analog band-pass filter the signal is passed through an A/D converter at a 
sampling frequency of about 200 Hz.  Now to marks all R peaks of the ECG 
signal the resultant signal of the previous stage is then passed through a set 
of thresholds. Then the output of the band-pass filter goes to differentiation 
element providing complex slope information. 
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Then to make all data point positive the signal is squared point by point, which intensifies 
the slope of the frequency response and helps to detect false positives caused by higher 
than usual T waves. Finally a sliding window integrator is used in order to obtain the 
information about slope and width of the QRS complex. In the last step two sets of 
thresholds are adjusted. The highest peak of these two thresholds is considered as an R 
peak. After identifying the peak, threshold adaptation can be done depending on the 
amplitude of the peak and this most important task of the decision rule. If we consider a 
larger intervals that may not detect some signal peaks and if we consider smaller one that 
would detect too many peaks. In a certain time interval if the high threshold is unable to 
detect the peak in this case, lower threshold is used and to identify the peak which has 
been lost, the algorithm has to search back in time. When a new peak is identified and it 
exceeds the high threshold, then this peak is considered as a signal peak otherwise 
considered as a noise peak. (Christos P., et al., 2003). The accuracy of the system turned 
out to be 99.77%. 
 
2.2 Wavelet Transform  
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useful in real life situations where the signals are not stationary. It is a mathematical tool 
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Figure 2. Block Diagram of Pan Tompkin Method

Then to make all data point positive the signal is squared point by point, which 
intensifies the slope of the frequency response and helps to detect false positives 
caused by higher than usual T waves. Finally a sliding window integrator 
is used in order to obtain the information about slope and width of the QRS 
complex. In the last step two sets of thresholds are adjusted. The highest peak 
of these two thresholds is considered as an R peak. After identifying the peak, 
threshold adaptation can be done depending on the amplitude of the peak and 
this most important task of the decision rule. If we consider a larger intervals 
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that may not detect some signal peaks and if we consider smaller one that 
would detect too many peaks. In a certain time interval if the high threshold is 
unable to detect the peak in this case, lower threshold is used and to identify 
the peak which has been lost, the algorithm has to search back in time. When 
a new peak is identified and it exceeds the high threshold, then this peak is 
considered as a signal peak otherwise considered as a noise peak. (Christos P., 
et al., 2003). The accuracy of the system turned out to be 99.77%.

2.2 Wavelet Transform 

Wavelets are mathematical functions having a finite oscillatory nature which 
makes them useful in real life situations where the signals are not stationary. It 
is a mathematical tool which decomposes a signal into basic functions which are 
known as wavelets. The signals decomposed into a set of orthogonal waveforms 
localized both in time and frequency domains. The wavelet transform is 
calculated separately for different segments of the time-domain signal at 
different frequencies, resulting in Multi-Resolution Analysis (MRA) (Oweis, R. J., 
& Abdulhay, E. W., 2011). The time and frequency resolution product is constant 
in this analysis. Thus, it provides a feature of a giving good frequency resolution 
and poor time resolution at low frequency, whereas good time resolution and 
poor frequency resolution at high frequency which makes it excellent for signals 
having low frequency components for long durations and high frequency 
components for short durations. The wavelet transform has recently emerged as 
one of the most dominant tools for analyzing challenging signals across a variety 
of areas in engineering and medicine (Addison, P. S., 2010).

Wavelet transforms are mainly of two types: Continuous Wavelet Transforms 
(CWT) and Discrete Wavelet Transforms (DWT). DWT can be used to extract the 
features of ECG to complete proper classifications. There are two types of filters, 
a low pass filter (LPF) and a high pass filter (HPF) which are used in Discrete 
Wavelet Transform (DWT) to decompose the signal into different scales. The 
approximation is the output coefficients of the LPF and the detail is output 
coefficients of the HPF. For second-level decomposition the approximation 
coefficient can be again sent to the low and high pass filter of the next level. In 
this way we can estimate the approximation and detail coefficient and breaks 
down the signal into its different components at the different levels of scales. 
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The block diagram of the Wavelet Transform is shown in Figure 3. Specific 
details of signal are selected to detect the R peaks. Generally R peak has the 
highest amplitude in the ECG signals. Several methods for R Peak detection 
have been designed to trace non-stationary ECG signals which are based on 
the Multi Resolution wavelet transform. The wavelet transforms of some ECG 
signals cannot perform accurately due to serious baseline drift, high frequency 
noise and artifacts. Baseline drift is of main concern during R peak detection, 
which gets removed by composing and decomposing the ECG signal in DWT. 
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the wavelet transform. Then the maxima of the absolute of the DWT, which exceeds the 
given threshold for each scale can be located. Multi level wavelet decomposition can be 
performed using DWT. Zero crossings indicate the characteristic waveforms of ECG. 
Based on the wavelet transform R peak is detected by using filters. Peak that corresponds 
to an R wave within the search window is found using maximums and minimums in the 
search window. Then fixed an adaptive threshold value less than the value of Premature 
Ventricular Contraction (PVC) and greater than that of R waves. Once we find the PVCs 
they are eliminated. This adjusts the signal quality changes and the need for manual 
adjustments for different patients is eliminated. The adaptive threshold algorithm uses the 
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ECG Records obtain from the MIT-BIH arrhythmia database is a dual channel 
ECG signal which is filtered by a band pass filter. To make the analysis of 
ECG signal easier in different frequency ranges, it is decomposed at different 
levels of scales with the help of the wavelet transform. Then the maxima of the 
absolute of the DWT, which exceeds the given threshold for each scale can be 
located. Multi level wavelet decomposition can be performed using DWT. Zero 
crossings indicate the characteristic waveforms of ECG. Based on the wavelet 
transform R peak is detected by using filters. Peak that corresponds to an R 
wave within the search window is found using maximums and minimums 
in the search window. Then fixed an adaptive threshold value less than the 
value of Premature Ventricular Contraction (PVC) and greater than that of 
R waves. Once we find the PVCs they are eliminated. This adjusts the signal 
quality changes and the need for manual adjustments for different patients is 
eliminated. The adaptive threshold algorithm uses the first wavelet to search 
the maximums and minimums and to estimate the wavelet amplitude of the 
normal R waves.  Jenkal W. et al. (2016) implemented the QRS detector and 
obtained a sensitivity of 99.66% and a positive predictivity of 99.8% for signals 
taken from the MIT-BIH database.
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2.3 Empirical Mode Decomposition 

The new nonlinear technique, called Empirical Mode Decomposition (EMD) 
method has been first designed by N. E. Huang et al. This technique is 
introduced for the analysis of nonlinear and non-stationary signals. The key 
part of this method is that it breaks down any complicated data set into a 
series of Intrinsic Mode Functions (IMFs), through a sifting process (see Figure 
4). Since the decomposition is based on the oscillations in signals at a very 
local level in time scale, so it is applicable to nonlinear and non stationary 
processes. The major advantage of this approach is that the signal is used itself 
to derive the basic functions so this decomposition method is an adaptive and 
highly efficient. It also reduces ECG-ridden noise by filtering all undesired 
decomposed fragments so this procedure is an adaptive filtering.

The first IMFs can sift out the noise and preserve the QRS content with respect 
to other signal components (Tang, J. T., et al., 2008). So SNR is improved by 
first IMFs. The length of the signal cannot determine experimentally though 
produced IMFs count is directly proportional to the signal length. Trial-and-
error methodologies are applied to the selection criteria of IMFs. 

An IMF is a function that satisfies two conditions:

(a) Equal number of zero crossings and extrema or at most differed by 1.
(b) At any point, the mean value of the envelope defined by minima and 

maxima, being symmetric with respect to zero. 

The high frequency or fast oscillations are represented by the lower order IMFs 
and low frequency or slow oscillations are represented by upper order IMFs. 
QRS region is the high frequency component of ECG signals. Hence lower order 
IMFs can be combined together to reconstruct the signal which highlights QRS 
region over the other waves and low frequency noises like baseline drift due to 
respiration etc. (S. Pal, and M. Mitra, 2010). 
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The algorithm is simple and consists of three blocks: Band-Pass Filter, Empirical 
Decomposition signal, sum the first three Intrinsic Functions Mode (IMF). The IMFs take 
its absolute value a(t), retain the amplitudes larger than threshold, and finally, find the 
position of the maximum of a segment of time duration tR starting from the first non-zero 
value. Now the first R-peak is detected. Similarly, find all other R-peak positions are 
collected and find whether the peak is positive or negative until the end of a(t) is reached. 

Figure 4. The various IMFs of the ECG signal

The algorithm is simple and consists of three blocks: Band-Pass Filter, Empirical 
Decomposition signal, sum the first three Intrinsic Functions Mode (IMF). The 
IMFs take its absolute value a(t), retain the amplitudes larger than threshold, 
and finally, find the position of the maximum of a segment of time duration 
tR starting from the first non-zero value. Now the first R-peak is detected. 
Similarly, find all other R-peak positions are collected and find whether the peak 
is positive or negative until the end of a(t) is reached. This algorithm consists of 
at least nine steps with more than a few specific equations for extraction. 

2.4 Hilbert Transform

Hilbert transform is a threshold detection scheme which is very important to 
distinguish and to identify the R-peaks in ECG signals. The threshold value 
cannot be constant for all ECG signals so it requires special attention. It should 
be defined with apropos to the ECG signal whose R peaks are to be detected 
(Kohler B.U., et al., 2002).

The ECG signal must be filtered and represented in such way so that the peak 
detection process yields efficient results even in the presence of noise within 
certain tolerable limits (Wilson J.D., et al., 2008). So Hilbert Transform is 
appropriate for this purpose. The Hilbert transform of a real-time function f(t) 
is                                       
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Equation (1) shows that this transformation does not change the independent variable so 
the output F(t) is also a function of t and it is a linear function of f(t) also. Convolution 
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This algorithm consists of two stages: first is filtering to remove the noise from 
ECG signals without affecting the data present in the signal and the second 
stage is decision thresholding followed by the R-peak detection procedure. As 
the data are primarily located up to 60Hz, hence the data is band-pass filtered 
up to 60 Hz, then to obtain a complex signal Hilbert Transform is applied and 
enhanced signal is obtained which is used for efficient peak detection. In the 
second stage, set the initial value of threshold, then the signal values above 
threshold determines. Now calculate the number of peaks in the signal and 
repeat the last step until the new peak count does not exceed or is equal to 
the earlier counted peaks. Determine the sample with highest amplitude in 
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each group then consider each detected peak and search for a sample around 
the peak, on either side with some suitable and appropriate leeway, with 
amplitude greater than that of the detected peak (Simranjit S. K. et al., 2012). 
By combining all the peaks, construct a signal which represents the R peaks of 
the given ECG signal. Prasad S.T. and Dr. Varadarajan S., (2013) implemented 
HHT technique as a tool for ECG QRS detection. The outcome was a sensitivity 
of 99.84% and specificity of 99.92%.

2.5 Fuzzy Logic Systems (FLS)

FLS gives the method of reasoning that resembles human reasoning. FLS 
has improved decision rules of judgment, since it involves all intermediate 
possibilities between digital values YES and NO. Fuzziness concepts have 
enrolled the depiction of possibilities among “yes” and “no” decisions through 
membership functions and decision rules (Upasani, D. E., and Kharadkar, R. 
D., 2012).

The fuzzy method is especially useful in a complicated medical situation 
where variables and diagnostic rules are in large number. For better automated 
analysis, check, modify, add and delete every fuzzy variable is very easy. The 
main characteristic of parallel reasoning guarantees about final decision will be 
dependent on every possible conclusion regarding beat/rhythm labeling. This 
is a significant advantage over more deterministic algorithms and permits multi 
conclusions to exist which are common in clinical practice (Zong W, and Jiang 
D., 1998). If the medical situation is very complicated and input variables are 
high, then rule frame consist of a very high dimensional support. Fuzzy-based 
classification system first normalized the raw ECG signals, preprocessed the 
signals and then disintegrated into smaller number of frequency components. 
Every frequency component is related to ECG signal features. Therefore the 
entire decomposed features are classified into a set of pre-defined categories. 

Input features of the decision process are first quantified, which is the main 
part of interception. Generally, membership functions and the definition of 
rules in the knowledge base are chosen appropriately to undergo iterative 
adjustment in terms of fuzzy variable. The results have revealed almost 100% 
correct detection.



ISSN: 2180-3811         Vol. 8     No. 2    July - December 2017

Journal of Engineering and Technology 

126

2.6	 Artificial	Neural	Networks	(ANN)

An ANN is a system in which various neurons are connected to each other (see 
Figure 6). To classify the we present the inputs and corresponding targets to 
the Neural Network, a structure compares the emerging output to the desired 
target and then adjusts the weights inside the network, that store data gained 
from training sets until a match occurs (Abibullaev B., Seo H.D., 2010). 

The stored empirical expertise desired outputs ANN is trained based on 
particular input (Ramlee R. A., et al., 2016). After in ANN which is based 
on training sets can be used to make judgment whenever needed. Once the 
network is trained by using specified input parameters the network can be 
made capable to do judgment through supervised training and inter neuron 
connection known as synaptic weights to give the best results.

Single-layer feed-forward network, matrix-vector input, and multi-layer feed-
forward network are neuron models and architectures used in ANN and several 
training algorithms such as back propagation, conjugate gradient algorithm, 
and Levenberg-Marquardt can be used to train the network structure. The 
structure of the Back-propagation network has three layers. There are 10 
neurons in 1st and 2nd layer and one neuron in 3rd layer. First two layers used 
Tan-Sigmoid transfer function and 3rd layer used a linear function. 

This structure is used to detect the R-peak in ECG Signal. If the r peak is 
present, then network gives the output 1, otherwise gives 0. The sampling rate 
of the recorded MIT-BIH arrhythmia database is 360Hz. The samples or some 
specific features of the beat can be used as the input data of ANN. Features of 
each sample are firstly extracted to reduce the neural network size by using 
a function called Features Extractor.  The inputs of feature extractor are the 
number of sample n and the ECG signal. Amplitude, RR interval, duration, 
differentiation, zero-crossing flag and the first element flag are the 6 input used 
to design the architecture. 
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Each layer contains a weight matrix, a bias vector and an output vector which 
are represented by W, b and a respectively. The term IW  is for the input layer 
weight and LW is the hidden layer weight. 

It is a challenging task to choose the number of neurons in the hidden layer. 
If the number of neurons is too large then the memory is distributed over a 
large number of weights. But if the number is too small, the network cannot 
make generalizations when presented with slightly different inputs. When the 
output is not satisfactory, one more time the network is trained to reduce the 
difference between the desired output and actual output. The Preprocessing 
was used before training the network, which normalize the inputs to make 
training smoother and faster. 

Mohamed B, et al., (2015) discussed computerized detection and classification 
of five cardiac conditions using ANNs. The core enhancement produced a 
three-layer network with 25 inputs, 5 neurons in the output layer and 5 neurons 
in its hidden layers that resulted in 91.8% recognition rate of the five cardiac 
conditions and an average accuracy of 84.93%.

3.0 CONCLUSION

After completion of above mentioned review, it may be concluded that 
appropriate R Peak detection techniques with sustained accuracy must be 
used to detect the type of arrhythmia. In this review, we have studied the 
performance of six R peak detection techniques, so anyone can use this review 
as a basis for their work and then start their work.
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Accurate R peak detection can be achieved using Pan-Tomkins algorithm 
After comparing with other methodologies, implementation of this algorithm 
could be simple, but as this method uses the squaring function, so if there is a 
noise in the signal then that might be increased and could be replaced with a 
rectification stage. DWT does not follow each physiological temporal variation 
hence it gives stable features to morphology variations and provides simple 
implementation, consistency and moderate accuracy but it suffers from high 
mathematical complexity and low prediction. 

Study reviews that Hilbert Transform is a stronger technique for frequency-
domain analysis than FFT and DWT techniques. Therefore, to asses low 
and high frequency contents of an ECG signals Hilbert Transform is highly 
recommended. Hence it can be concluded that to obtain the desired R 
Peak detection more than one analysis technique must be combined and 
implemented.
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