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ABSTRACT

The stochastic motion behaviour of polystyrene particles and 
teratocarcinoma cells on plain and functionalised surfaces is investigated 
and analysed. The solution of 1 x 106 particles/cells per ml concentration is 
pipetted into a reservoir and images are captured and analysed using an in-
house written software. A theoretical model was used to predict the motion 
and compared to the experimental results. The conditions and limitations 
to allow particles and cells to move freely in stochastic motion on surface 
are discussed in this paper. PEG functionalisation of the glass surface was 
found to improve the particles and cells mobility, on average 26%. Analysis 
technique proposed in this paper demonstrates that size distribution of 
different cell line can be determined. The results are presented in light of the 
potential application of the observed motion on functionalised surfaces for 
lab-on-a-chip devices, especially for adherent biological cells applications. 
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1.0   INTRODUCTION 
 

The use of optical trapping and planar optics as a versatile and non-
contact tool is becoming a ubiquitous trend within diverse technological 
disciplines for precise particle and cell handling. Over the years, these 
optical trapping and planar manipulation techniques were found to apply 
over a wide range of particle types, including particles as diverse as atoms 
[1], molecules [2], microscopic dielectric particles and biological cells [3-5]. 
According to works by [3-5], optical trapping and propulsion on a channel 
waveguide device have shown its potential to sort and discriminate 
biological cells of different sizes and refractive index. This has a significant 
clinical advantage for biological applications where optical selection has 
never been thoroughly developed. Furthermore the channel waveguide 
configuration permits integration with microsystems for a lab-on-a-chip 
device. However, current systems [3-5] only works with non-adherent 
cells, rendering less applicability to adherent cells; by far the most 
common cell phenotype [6]. Adherent cells express abundant adhesion 
proteins on their membranes that provide a structural link between their 
cytoskeleton and extracellular surfaces [6]. Hence, a fundamental 
understanding of how surface properties might affect the overall motion 
behaviour becomes crucial to the design of these integrated devices for 
adherent cells application. 
 
The project investigated stochastic motion of polystyrene particles 
(Polysciences Inc, 15µm and 20µm in diameter) and adherent mammalian 
eukaryotic cells, teratocarcinoma (Southampton General Hospital). 
Teratocarcinoma cells are an adherent germ cell tumour [7, 8]. There are 
two teratocarcinoma cell lines used in this project, namely TERA1 (a 
stable, undifferentiated cell line) and NT2 (prone to cell differentiation). 
The continuous stochastic motion of particles and cells, suspended in 
various liquid media and on two different surfaces (plain and PEG 
functionalised) are investigated in this paper. Different aspects such as 
particle size and functionalisation of surfaces are then examined with 
relation to their statistically tabulated signatory motion on the surface.  
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2.0   TECHNIQUES AND MATERIALS 

 
2.1  Image Acquisition 
 

Stochastic motion of polystyrene particles and teratocarcinoma cells was 
investigated through a series of images that were analysed using in-house 
written programs. In order to capture these images, a Nikon optical 
stereomicroscope (Universal Epi-illuminator 10), equipped with a cooled 
CCD camera (QImaging, Monochrome Retiga 1300) was used to observe 
the particles and cells.  
 
The solution containing particles or cells was pipetted into a reservoir 
(CoverWell, Z379077, Sigma Aldrich) placed on a soda-lime glass slide 
positioned using a vacuum holder (Thorlabs, HWV001), as depicted in 
Figure 1. The microscope was adjusted in a way that it only focused on the 
surface of the glass slide, to ensure that only particles/cells close to the 
surface were observed. 

 
 

20x focus lens 

Light source 

CCD camera 

Particles/Cells 

CoverWell 

Glass slide 

Vacuum 

Microscope 

In-house software  

 
Figure 1 Experimental set up for monitoring particle and cell movements 

 
2.2  Image Analysis 
 

Typically up to 10,000 images were taken for each stochastic motion 
experiment. Each of these images covers 30 to 90 particles or cells (for a 
concentration of 1 x 106 particles/cells per ml) using the 20x objective lens. 
The experiments were repeated at least three times which makes every 
data point presented an average of up to 270 measurements for particles 
and up to 400 for cells (due to more experimental cycles). Solid particles 
such as polystyrene particles reflect more light and hence require a shorter 
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integration time compared to the mostly transparent, teratocarcinoma 
cells. Hence, the frame rate has to take into consideration the integration 
time of the camera and also the level of binning required of each object. 
 
All the images are presented by one dimensional hexadecimal matrix. 
Images are loaded into the program and translated into two dimensional 
matrices for image analysis. The output is presented in black and white 
images for example as illustrated in Figure 2 a). A threshold level is made 
in order to identify particles and distinguish the background value to be 
255 (black) and the particle to be 0 (pure white) as indicated in Figure 2 b). 
The threshold value is taken to be: 
 

   2 ( )pixel pixval pixvalT P P       (1) 
 
where Tpixel is the pixel threshold and Ppixval is the pixel value. Equation (1) is 
used for determining the pixel threshold and hence detecting particles and 
cells. The distance travelled by each particle/cell, for each frame, is 
tabulated for subsequent graphical representations. 
 
2.3  Error Estimation 
 

Errors occurring during the data collection and analysis of the stochastic 
motion are inevitable. Most of the errors usually originated from a 
physical limitation such as the microscope illumination brightness and 
camera detector sensitivity. Three types of error are described in this 
section; random, systematic and dynamic errors. 
 

 
Figure 2 Image of a 10µm polystyrene particle a) prior and b) after the 

thresholding process 
 

One of the major contributors to errors during the data collection process 
is from the camera noise. This random error originates from the statistical 
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fluctuation in the number of photons detected by the camera. Such 
fluctuations still exist even in an ideal condition, due to the nature of the 
microscope illumination. In order to estimate the error from camera noise, 
the variation of size from one frame to another for a specific particle is 
tabulated. Their corresponding error in determining their exact position 
for each frame is calculated and averaged. Table 1 shows the errors from 
camera noise for a specific particle size and cell. 
 
Table 1 Tabulation of polystyrene particles and cells size distribution and their 
corresponding errors measurements. Note that the measured diameter and size 

deviation for the particles were provided by the manufacturer. Diameter and 
size distribution for the cells were measured using Zeiss Axio Observer Z1 

microscope 
 

Particl
es/ 

Cells 

Measured 
diameter 

(µm) 

Size standard 
deviation 

(µm) 

Error from 
camera noise (x 

10-3µm) 

Error from 
thresholding 

process  
(x 10-3µm) 

20 20.99 1.24 1.7 2.2 
15 16 2.56 2.2 3.1 

NT2 18.91 3.12 6.9 21.7 
TERA1 17.73 2.46 5.4 24.4 
 
The thresholding process during the data analysis and the limitation 
arising from the camera detector can cause pixel biasing in the image 
identification; this results in an ill-defined boundary as shown in Figure 
2a). This is a typical systematic error when capturing a 3D object in a 2D 
image. Error due to the thresholding process is calculated by comparing 
the size of the threshold image and the measured size for each particle. 
The bias in determining the exact position of the particle/cell is tabulated 
and averaged as shown in Table 1.  
 
Apart from that, there are several other sources of error. A phenomenon 
such as drifting is common when securing particles or cells in solution in a 
reservoir such as CoverWell. An imbalance of water pressure due to 
uneven surfaces, the existence of air bubbles or thermal expansion arising 
from illumination can all be possible factors that cause drifting. 
Furthermore, there is also vibration from the laboratory environment to 
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consider and also the measurement of stochastic motion in 2D (despite the 
fact that the particles and cells are moving in 3D). However such dynamic 
errors can be minimised through a detrending analysis [9], which is a 
computational correction for global error. This technique however has the 
possibility of reducing the distance travelled due to stochastic motion. 
Errors from drifting, for instance, can also be detected just by the 
monitoring of live data from the microscope by an experienced observer. 
Corrective action such as levelling the glass slide or switching off the 
microscope light for a while to prevent overheating will minimise the drift 
effect. 
 
2.4   PEG Surface Functionalisation 
 

Polyethylene glycol (PEG) based surface passivation techniques have been 
demonstrated to prevent cell adhesion [10-14] due to the properties of the 
oligomer. The oligomer of PEG is hydrophilic and non-structure-forming 
which act against the association of proteins. Adhesion due to the 
dominance of van der Waals force can be reduced by physically increasing 
the distance between the particles or cells and the surface. OH groups are 
created on the glass slide surface to be reacted with the silane group in the 
PEG chain. A spacer is included between the PEG chain and silane group 
as a steric protection against unwanted side reactions. The PEG layer used 
in this project is fabricated by cleaning the glass slide in a weak piranha 
solution; which is a solution of NH4OH, H2O2, and DI water in a ratio of 
1:1:5. This cleaning process creates the OH group on the glass surface. 
After washing with deionised water and drying, the glass slide is soaked 
in derivatisation solution made of 4% PEG-silane (Gelest – SIM6492.7) in 
toluene. The glass slide is left for 24 hours before cleaning consecutively 
with anhydrous toluene and ethanol. The glass slide is then cured for 30 
minutes at 100°C in an oven. 
 
 
3.0   RESULTS AND DISCUSSION 
 

Stochastic motion investigations were carried out using the polystyrene 
particles and two types of teratocarcinoma cells; NT2 and TERA1. Two 
controllable factors that can influence stochastic motion are viscosity and 
temperature. Viscosity was maintained by using samples from the same 
particle solution for each data acquisition run. The fluctuation in the 
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temperature was minimised through the restriction of the microscope 
illumination to avoid heating the solution in a temperature moderated 
laboratory.  
 
3.1   Motion of polystyrene particles on functionalised surface 
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Figure 3 The distance travelled (squared) from one frame to a subsequent frame 
by particles of different sizes on a plain glass surface in water. The theoretical 

data (    ), experimental data (+) and linear best fit line for the experimental data 
 (    ) are plotted for each particle size 

 
The theoretical representation of the stochastic motion, as derived in [15-
18], can be interpreted in practice as, 

2< > ( )sr Ln t        (2) 
 

which means that the mean square distance, <r2>, of any particle is equal to 
the number of steps taken, ns, of a specific time, t, multiplied by the length, 
L, of each step. The distance travelled was tabulated and a graphical 
representation of the particle motion is illustrated in Figure 3.  
 
Figure 3 illustrates that the data points sometimes jumps or falls 
drastically from one frame to another resulting a ‘ripple’ motion in the 
measurements. This type of particle motion is non-physical and is most 
likely to arise from errors such as from the thresholding process, as 
described in Section 2.3. The best fit linear line, included in each graph, is 
regarded as the true representation of the particle motion. The slope of the 
linear fit line reflects the dependency on the size of the particle and can be 
compared with the theoretical plot [19, 20], which included in the graphs. 
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Figure 3 The distance travelled (squared) from one frame to a subsequent frame 
by particles of different sizes on a plain glass surface in water. The theoretical 

data (    ), experimental data (+) and linear best fit line for the experimental data 
 (    ) are plotted for each particle size 

 
The theoretical representation of the stochastic motion, as derived in [15-
18], can be interpreted in practice as, 

2< > ( )sr Ln t        (2) 
 

which means that the mean square distance, <r2>, of any particle is equal to 
the number of steps taken, ns, of a specific time, t, multiplied by the length, 
L, of each step. The distance travelled was tabulated and a graphical 
representation of the particle motion is illustrated in Figure 3.  
 
Figure 3 illustrates that the data points sometimes jumps or falls 
drastically from one frame to another resulting a ‘ripple’ motion in the 
measurements. This type of particle motion is non-physical and is most 
likely to arise from errors such as from the thresholding process, as 
described in Section 2.3. The best fit linear line, included in each graph, is 
regarded as the true representation of the particle motion. The slope of the 
linear fit line reflects the dependency on the size of the particle and can be 
compared with the theoretical plot [19, 20], which included in the graphs. 
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A reduction in gradient, of 69% in average, was observed for the 15µm 
and 20µm particle sizes. 
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Figure 4 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a) 15µm and b) 20 µm  particles a plain glass surface in 
water. The Gaussian best fit line (    ) is plotted for each experimental data ( ) 

alongside the theoretical model (    )  
 
Data presented in Figure 3 is re-plotted in a histogram format by 
compiling the frequency of distance travelled between each frame. Figure 
4 shows a series of histograms for all polystyrene particles under 
consideration.  
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A reduction in gradient, of 69% in average, was observed for the 15µm 
and 20µm particle sizes. 
 

 

Step size (µm)

0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

1µm water
Best fit (1µm water)
1µm theory

Step size (µm)

0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y

0

10

20

30

40

50

3µm water
Best fit (3µm water)
3µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

6µm water
Best fit (6µm water)
6µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

10µm water
Best fit (10µm water)
10µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

15µm water
Best fit (15µm water)
15µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

20µm water
Best fit (20µm water)
20µm theory

a) b) 

c) d) 

e) f) 

Fr
eq

ue
nc

y 
      

1µm particle 

Step size (µm) 
 

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 

Fr
eq

ue
nc

y 
      

3µm particle 

6µm particle 10µm particle 

15µm particle 20µm particle 

 

Step size (µm)

0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

1µm water
Best fit (1µm water)
1µm theory

Step size (µm)

0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y

0

10

20

30

40

50

3µm water
Best fit (3µm water)
3µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

6µm water
Best fit (6µm water)
6µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

10µm water
Best fit (10µm water)
10µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

15µm water
Best fit (15µm water)
15µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

20µm water
Best fit (20µm water)
20µm theory

a) b) 

c) d) 

e) f) 

Fr
eq

ue
nc

y 
      

1µm particle 

Step size (µm) 
 

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 

Fr
eq

ue
nc

y 
      

3µm particle 

6µm particle 10µm particle 

15µm particle 20µm particle 

 
a)      b) 

 

Figure 4 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a) 15µm and b) 20 µm  particles a plain glass surface in 
water. The Gaussian best fit line (    ) is plotted for each experimental data ( ) 

alongside the theoretical model (    )  
 
Data presented in Figure 3 is re-plotted in a histogram format by 
compiling the frequency of distance travelled between each frame. Figure 
4 shows a series of histograms for all polystyrene particles under 
consideration.  
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Figure 5 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a) 15µm and b) 20 µm  particles a PEG functionalised glass 

surface in water.  
 

All histogram plots are fitted with a Gaussian profile and their 
corresponding theoretical Gaussian profile. The theoretical projection of 
distance travelled by the particles was calculated (refer to Section 2.3) from 
the measured particle diameter and the corresponding size distribution as 
listed in Table 1. The Gaussian width or full width half maximum 
(FWHM) was calculated from equation, 
 

  
 

2 2/ 2
FWHM 2 2ln2

x
e      (2) 

 
where σ denotes the standard deviation. The peak frequency of the 
Gaussian profile was made equal to the experimental Gaussian plot for 
comparison. 
 
The peak value of the Gaussian fitted line on the experimental data is 
equivalent to the average particle size. The width of the Gaussian profile 
corresponds to the size distribution of the particle as well as the errors in 
the data acquisition/analysis and the interaction between the particle and 
the surface. Inconsistency between the theoretical and experimentally 
observed stochastic motion especially for the large size particles can be 
explained from different aspects. Van der Waals force between the surface 
and the particles, indicates that the force is proportional to the particle size 
and inversely proportional to the separation distance. Furthermore the 
gravitational force is also proportional to particle size, hence increasing the 
attractive force via the reduction of separation distance for larger particles. 



Polystyrene particles and mammalian cells motion behaviour on different surfaces 

173ISSN: 2180-3811        Vol. 3     June 2012

123 
 

 

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

35

20µm PEG
Best fit (20µm PEG)
20µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

35

15µm PEG
Best fit (15µm PEG)
15µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

35

10µm PEG
Best fit (10µm PEG)
10µm theory

Step size (µm)

0.00 0.02 0.04 0.06 0.08 0.10

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

6µm PEG
Best fit (6µm PEG)
6µm theory

Step size (µm)

0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y

0

10

20

30

40

50

60

3µm PEG
Best fit (3µm PEG)
3µm theory

Step size (µm)

0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

35

1µm PEG
Best fit (1µm PEG)
1µm theory

a) b) 

c) d) 

e) f) 

Fr
eq

ue
nc

y 
      

1µm particle 

Step size (µm) 
 

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Fr
eq

ue
nc

y 
      

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 
 

Step size (µm) 

Fr
eq

ue
nc

y 
      

3µm particle 

6µm particle 10µm particle 

15µm particle 20µm particle 

 
a)     b) 

 

Figure 5 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a) 15µm and b) 20 µm  particles a PEG functionalised glass 

surface in water.  
 

All histogram plots are fitted with a Gaussian profile and their 
corresponding theoretical Gaussian profile. The theoretical projection of 
distance travelled by the particles was calculated (refer to Section 2.3) from 
the measured particle diameter and the corresponding size distribution as 
listed in Table 1. The Gaussian width or full width half maximum 
(FWHM) was calculated from equation, 
 

  
 

2 2/ 2
FWHM 2 2ln2

x
e      (2) 

 
where σ denotes the standard deviation. The peak frequency of the 
Gaussian profile was made equal to the experimental Gaussian plot for 
comparison. 
 
The peak value of the Gaussian fitted line on the experimental data is 
equivalent to the average particle size. The width of the Gaussian profile 
corresponds to the size distribution of the particle as well as the errors in 
the data acquisition/analysis and the interaction between the particle and 
the surface. Inconsistency between the theoretical and experimentally 
observed stochastic motion especially for the large size particles can be 
explained from different aspects. Van der Waals force between the surface 
and the particles, indicates that the force is proportional to the particle size 
and inversely proportional to the separation distance. Furthermore the 
gravitational force is also proportional to particle size, hence increasing the 
attractive force via the reduction of separation distance for larger particles. 
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Reduction in separation distance also changes the boundary condition for 
the stochastic motion theory, as explained in [21-24]. The drag force in this 
case is expected to increase as the effective local viscosity is increased. 
Hence large particles (15µm and 20µm) were observed to move 
significantly more slowly than predicted by the theory. Note that the 
stochastic motion theory considered here assumed that the mass of the 
particle is small and that the particle is moving in 2D in an unbounded 
medium. Hence, these factors introduce more error in the image analysis 
and are consequently translated into a wider width of the Gaussian 
profile. 

 
3.2 Motion of polystyrene particles on functionalised surface 
 

Histograms of particle motion, as shown in Figure 5 illustrate an overall 
improvement in the stochastic motion from the maximum frequency and 
the width of the Gaussian profile extracted for all particle sizes. The 
maximum frequency of the step size taken, within the frame rate, is 
increased on average by 20% while the width decreased by 49% for large 
(15µm and 20µm) particles. R2, which is known as the correlation of 
determination, is the statistical evaluation of the goodness of fit of a model 
vis-à-vis experimental data. The R2 value for the histograms in Figure 5, on 
average, is 0.92. In comparison, the R2 value for histograms in Figure 4 is 
0.89.  The frequency increment, narrower width and higher R2 value 
indicate that PEG functionalisation improves the stochastic motion of 
particles on a surface by minimising the effect of the van der Waals and 
the drag force that act against the motion. 

 
3.3 Motion of single cells 
  

Teratocarcinoma cells were prepared for the stochastic experiments by 
trypsinisation process and re-suspended in a fresh DMEM solution (with 
phenol red and 10% serum) [25]. The cells were pipetted on the surface of 
the glass slide and the motion of each cell was analysed from the frames 
taken. More frames were taken for this experiment (up to 10,000 frames for 
a single experimental cycle) particularly targeted for better cell motion 
detection and to increase the probability of detecting each cell. The cell 
solution is changed every 1 hour to maintain the same cell condition for all 
data acquired. All experimental data are compared with the theoretical 
model [21-24]. 
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Reduction in separation distance also changes the boundary condition for 
the stochastic motion theory, as explained in [21-24]. The drag force in this 
case is expected to increase as the effective local viscosity is increased. 
Hence large particles (15µm and 20µm) were observed to move 
significantly more slowly than predicted by the theory. Note that the 
stochastic motion theory considered here assumed that the mass of the 
particle is small and that the particle is moving in 2D in an unbounded 
medium. Hence, these factors introduce more error in the image analysis 
and are consequently translated into a wider width of the Gaussian 
profile. 

 
3.2 Motion of polystyrene particles on functionalised surface 
 

Histograms of particle motion, as shown in Figure 5 illustrate an overall 
improvement in the stochastic motion from the maximum frequency and 
the width of the Gaussian profile extracted for all particle sizes. The 
maximum frequency of the step size taken, within the frame rate, is 
increased on average by 20% while the width decreased by 49% for large 
(15µm and 20µm) particles. R2, which is known as the correlation of 
determination, is the statistical evaluation of the goodness of fit of a model 
vis-à-vis experimental data. The R2 value for the histograms in Figure 5, on 
average, is 0.92. In comparison, the R2 value for histograms in Figure 4 is 
0.89.  The frequency increment, narrower width and higher R2 value 
indicate that PEG functionalisation improves the stochastic motion of 
particles on a surface by minimising the effect of the van der Waals and 
the drag force that act against the motion. 

 
3.3 Motion of single cells 
  

Teratocarcinoma cells were prepared for the stochastic experiments by 
trypsinisation process and re-suspended in a fresh DMEM solution (with 
phenol red and 10% serum) [25]. The cells were pipetted on the surface of 
the glass slide and the motion of each cell was analysed from the frames 
taken. More frames were taken for this experiment (up to 10,000 frames for 
a single experimental cycle) particularly targeted for better cell motion 
detection and to increase the probability of detecting each cell. The cell 
solution is changed every 1 hour to maintain the same cell condition for all 
data acquired. All experimental data are compared with the theoretical 
model [21-24]. 
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Figure 6 illustrates the distance travelled by the TERA1 and NT2 cells 
respectively. Note that after 125 seconds, the cells on average moved about 
2.8µm. At this rate, the motion of the cell matches the motion of a 20µm 
polystyrene particle moving on a plain surface. The experimental peak 
value of the Gaussian best fit line matched (within 10%) the theoretical 
peak. However, the widths of the experimental histogram are observed to 
be 40% to 50% wider than the theoretical model. 
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Figure 6 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a) TERA1 and b) NT2 cell on a PEG functionalised glass 

surface in DMEM with serum.  
 

3.4 Motion of a group of cells  
 

Analysing teratocarcinoma cells individually reveals properties specific to 
the cell stage, surface characteristics and cell size. Analysing the whole 
population of cells has the benefit of reducing errors within each single 
data point. Figure 7 b) illustrates the histogram of the step size taken in 
each frame for NT2 cells. Comparing this graph to Figure 7 a) shows that 
the distribution of step sizes of NT2 cells is broader than for TERA1 cells. 
As the experimental setup and the data collection process for both cell 
types was the same, a wider histogram width for NT2 might indicate a 
larger size distribution. This agrees with the measurements tabulated in 
Table 1 which shows a wider standard deviation for NT2 cells. Both cells 
have approximately the same average size; 19µm for NT2 and 18µm for 
TERA1 cells as estimated from the Gaussian best fit profile and these 
values concur with the average cell size measurements using the 
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Figure 6 illustrates the distance travelled by the TERA1 and NT2 cells 
respectively. Note that after 125 seconds, the cells on average moved about 
2.8µm. At this rate, the motion of the cell matches the motion of a 20µm 
polystyrene particle moving on a plain surface. The experimental peak 
value of the Gaussian best fit line matched (within 10%) the theoretical 
peak. However, the widths of the experimental histogram are observed to 
be 40% to 50% wider than the theoretical model. 
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Figure 6 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a) TERA1 and b) NT2 cell on a PEG functionalised glass 

surface in DMEM with serum.  
 

3.4 Motion of a group of cells  
 

Analysing teratocarcinoma cells individually reveals properties specific to 
the cell stage, surface characteristics and cell size. Analysing the whole 
population of cells has the benefit of reducing errors within each single 
data point. Figure 7 b) illustrates the histogram of the step size taken in 
each frame for NT2 cells. Comparing this graph to Figure 7 a) shows that 
the distribution of step sizes of NT2 cells is broader than for TERA1 cells. 
As the experimental setup and the data collection process for both cell 
types was the same, a wider histogram width for NT2 might indicate a 
larger size distribution. This agrees with the measurements tabulated in 
Table 1 which shows a wider standard deviation for NT2 cells. Both cells 
have approximately the same average size; 19µm for NT2 and 18µm for 
TERA1 cells as estimated from the Gaussian best fit profile and these 
values concur with the average cell size measurements using the 
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microscope. The width of the theoretical Gaussian profile is still slightly 
smaller than the experimental value for both cells. Width difference for 
TERA1 is about 29% and for NT2 is 34%. The R2 value for the Gaussian fit 
in Figure 7 is 0.94 and corresponds to the reduced variance in the plot of 
the distance travelled. This is an 8% improvement compared to Gaussian 
fit for single cells. 
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Figure 7 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a group of a) TERA1 and b) NT2 cells on a PEG 

functionalised glass surface in DMEM with serum.  
 
 
4.0 CONCLUSION 
 

The results presented in this paper show the investigation of stochastic 
motion for particles and cells and the limitation of their mobility. It was 
found that PEG functionalisation of the glass surface improves the 
particles and cells mobility, on average 26%. Analysis of single and 
multiple cells shows that individual errors can be eliminated and size 
distribution of cells can be determined from their stochastic motion 
signature. Thus, using the experimental setup, manipulation of particles 
and cells will benefit from the PEG surface functionalisation; especially 
when experimenting with the naturally adherent biological cells.  
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microscope. The width of the theoretical Gaussian profile is still slightly 
smaller than the experimental value for both cells. Width difference for 
TERA1 is about 29% and for NT2 is 34%. The R2 value for the Gaussian fit 
in Figure 7 is 0.94 and corresponds to the reduced variance in the plot of 
the distance travelled. This is an 8% improvement compared to Gaussian 
fit for single cells. 
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Figure 7 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a group of a) TERA1 and b) NT2 cells on a PEG 

functionalised glass surface in DMEM with serum.  
 
 
4.0 CONCLUSION 
 

The results presented in this paper show the investigation of stochastic 
motion for particles and cells and the limitation of their mobility. It was 
found that PEG functionalisation of the glass surface improves the 
particles and cells mobility, on average 26%. Analysis of single and 
multiple cells shows that individual errors can be eliminated and size 
distribution of cells can be determined from their stochastic motion 
signature. Thus, using the experimental setup, manipulation of particles 
and cells will benefit from the PEG surface functionalisation; especially 
when experimenting with the naturally adherent biological cells.  
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microscope. The width of the theoretical Gaussian profile is still slightly 
smaller than the experimental value for both cells. Width difference for 
TERA1 is about 29% and for NT2 is 34%. The R2 value for the Gaussian fit 
in Figure 7 is 0.94 and corresponds to the reduced variance in the plot of 
the distance travelled. This is an 8% improvement compared to Gaussian 
fit for single cells. 
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Figure 7 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a group of a) TERA1 and b) NT2 cells on a PEG 

functionalised glass surface in DMEM with serum.  
 
 
4.0 CONCLUSION 
 

The results presented in this paper show the investigation of stochastic 
motion for particles and cells and the limitation of their mobility. It was 
found that PEG functionalisation of the glass surface improves the 
particles and cells mobility, on average 26%. Analysis of single and 
multiple cells shows that individual errors can be eliminated and size 
distribution of cells can be determined from their stochastic motion 
signature. Thus, using the experimental setup, manipulation of particles 
and cells will benefit from the PEG surface functionalisation; especially 
when experimenting with the naturally adherent biological cells.  
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microscope. The width of the theoretical Gaussian profile is still slightly 
smaller than the experimental value for both cells. Width difference for 
TERA1 is about 29% and for NT2 is 34%. The R2 value for the Gaussian fit 
in Figure 7 is 0.94 and corresponds to the reduced variance in the plot of 
the distance travelled. This is an 8% improvement compared to Gaussian 
fit for single cells. 
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Figure 7 The histograms of the step size taken to travel from one frame to a 
subsequent frame by a group of a) TERA1 and b) NT2 cells on a PEG 

functionalised glass surface in DMEM with serum.  
 
 
4.0 CONCLUSION 
 

The results presented in this paper show the investigation of stochastic 
motion for particles and cells and the limitation of their mobility. It was 
found that PEG functionalisation of the glass surface improves the 
particles and cells mobility, on average 26%. Analysis of single and 
multiple cells shows that individual errors can be eliminated and size 
distribution of cells can be determined from their stochastic motion 
signature. Thus, using the experimental setup, manipulation of particles 
and cells will benefit from the PEG surface functionalisation; especially 
when experimenting with the naturally adherent biological cells.  
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