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ABSTRACT

The nonlinear fin problem with temperature-dependent thermal conductivity and heat 
transfer coefficient is analytically studied. Collocation method (CM), Variation iteration 
method (VIM) and Homotopy Perturbation Method (HPM) are used to solve the present 
problem. Also, fourth order Runge–Kutta numerical method is applied as a numerical 
method for validation. Analytical results are presented through the graphs and the tables 
in various values of parameters. The results reveal that the CM is very effective, simple and 
more accurate than other techniques. Furthermore, we analyze the effects of some physical 
applicable parameters in this problem such as thermal conductivity parameter (β), thermo-
geometric fin parameter (M) and heat transfer mode (m).

KEYWORDS: Collocation method (CM); variational iteration method (VIM); homotopy 
perturbation method (HPM); heat transfer; fin 

1.0 INTRODUCTION

Fins or extended surfaces are frequently used to enhance the heat transfer 
between a solid surface and its surrounding medium. Extend surfaces are 
extensively used in various industrial applications; for example, liquid-gas heat 
exchangers, air-cooled internal combustion engines, the electrical apparatus, 
nucleate boiling, etc. Since Most of problems and scientific phenomenon such 
as heat transfer problems for the fins (Kiwan, 2007; Gorla Reddy & Bakier, 
2011; Domairry & Fazeli, 2011; Ganji, 2011; Khani et al, 2009), are inherently 
of nonlinearity. Therefore, the differential equation for a convective fin does 
not admit an exact solution and these nonlinear equations should be solved 
using other methods, Such as numerical analysis or analytical method. In 
the analytical perturbation method, we should exert a small parameter in the 
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equation. Therefore, finding this parameter and exerting it into the equation is 
difficulties of this method. In recent years, scientists have presented some new 
methods for solving nonlinear differential equations; for instance, δ-expansion 
method (Ganji & Hashemi, 2011a), Adomian’s decomposition method (Ganji & 
Hashemi, 2011b), Homotopy perturbation method (HPM) (He, 1999; He 2005a; 
He, 2005b; Esmaeilpour & Ganji, 2007; He, 2010; Ganji & Rajabi, 2006; Ganji, 
Ganji & Ganji, 2011) and Variational iteration method (VIM) (He, 2007; He & 
Wu, 2006; Ganji, Rostamiyan, Petroudi & Nejad, 2014; Ganji, Tari & Jooybari, 
2014; He, 1999). One of the other semi-exact methods is the weighted residual 
methods (WRMs). Collocation method (CM), Galerkin method (GM), and 
least square method (LSM) are examples of WRMs. These methods are the 
most effective and convenient ones for both linear and nonlinear equations. 
Stern and Rasmussen used collocation method for solving a third order linear 
differential equation (Stern & Rasmussen, 1996). Hu and Li and Herrera et al. 
applied collocation method for Poisson’s equation and advection–diffusion 
equation respectively (Hu & Li, 2006; Herrera, Diazviera, Yates, 2004). Arnau 
et al., presented a new alternative method based in polynomial collocation 
and used it to model the flow in intake and exhaust of internal combustion 
engine. Hendi and Albugami solved Fredholm–Volterra integral equation 
using collocation method (Hendi & Albugami, 2010). Recently Hatami and 
Ganji applied CM on non-Newtonian nanofluid passing through the porous 
media between two coaxial cylinders (Hatam & Ganji, 2013). In this article, 
the nonlinear fin problem with temperature-dependent thermal conductivity 
and heat transfer coefficient is solved through the three methods: Collocation 
method, Homotopy perturbation method and the Variation iteration method. 
Also Runge-Kutta method is used to evaluate the excellence and accuracy of 
the proposed methods. The computations show that CM allows us to obtain 
approximations with an error relative to the numerical solution smaller than 
the errors obtained using other methods.
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2.0  METHODOLOGY

2.1 Governing equations

Consider a straight fin with an arbitrary constant cross-sectional area; perimeter   
and length. The fin is attached to a base surface of temperature, extends into 
a fluid of temperature, and its tip is insulated. The one-dimensional energy 
balance equation is given as in Equation (1) below: -
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The thermal conductivity of the fin material is assumed to be a linear function of 
temperature according to the expression in Equation (2):- 
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where ak  is the thermal conductivity at the ambient fluid temperature of the fin and   is 
the parameter describing the thermal conductivity variation. Also It is considered that h  
vary with temperature function by Equation (3):- 
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where bh  is the heat transfer coefficient at the base temperature. The exponent m  depends 
on the heat transfer mode. Typical values of n are 1/ 4  for laminar film boiling or 
condensation, 0 constant for heat transfer coefficient, 1 / 4  for laminar natural convection, 
1/ 3  for turbulent natural convection, 2  for nucleate boiling, and 3  for radiation. 
 

                                                                                       (1)

The thermal conductivity of the fin material is assumed to be a linear function 
of temperature according to the expression in Equation (2):-
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where ka is the thermal conductivity at the ambient fluid temperature of the fin 
and λ is the parameter describing the thermal conductivity variation. Also It is 
considered that h vary with temperature function by Equation (3):-
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where hb is the heat transfer coefficient at the base temperature. The exponent m 
depends on the heat transfer mode. Typical values of n are –1/4 for laminar film 
boiling or condensation, 0 constant for heat transfer coefficient, 1/4 for laminar 
natural convection, 1/3 for turbulent natural convection, 2 for nucleate boiling, 
and 3 for radiation.

In order to simplify the energy equation, the dimensionless parameters are 
defined as in Equation (4) as follow: -
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Hence, the energy in Equation (1) will take the form (Khani, Raji & Nejad, 2009) as in 
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The boundary conditions are as given in Equation (6) below: - 
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The governing Equation (5) can be rewritten as in Equation (7) below:- 
 

2 1 2(1 ) ( ) 0        mM  (7) 
 
2.2 Basic idea of Collocation method 

Collocation method is one of the approximation techniques for solving differential 
equations called the Weighted Residual Methods (WRMs). For the conception of the 
main idea of this method, suppose a differential operator D is acted on a function u to 
produce a function p (Hatami and Ganji, 2013) as in Equation (8) below: - 
 

( ( )) ( )D u x p x  (8) 
 
We wish to approximate u by a function u , which is a linear combination of basic 
functions chosen from a linearly independent set, as in Equation (9):- 
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Now, when substituted into the differential operator, D, the result of the operations is not 

( )p x . Hence an error or residual will exist as shown in Equation (10) below: - 
 

( ) ( ) ( ( ) ( )) 0   E x R x D u x p x  (10) 
 
The notion in the Collocation is to force the residual to zero in some average sense over 
the domain, as given in Equation (11) below: - 
 

( ) ( ) 0 , 1,2,...,  ix R x W x i n  (11) 
 
where the number of weight functions iW  is exactly equal the number of unknown 
constants ic  in u . The result is a set of n  algebraic equations for the unknown constants 

ic . For Collocation method, the weighting functions are taken from the family of Dirac   

                                         (4)
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The boundary conditions are as given in Equation (6) below: -
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Collocation method is one of the approximation techniques for solving 
differential equations called the Weighted Residual Methods (WRMs). For the 
conception of the main idea of this method, suppose a differential operator D 
is acted on a function u to produce a function p (Hatami and Ganji, 2013) as in 
Equation (8) below: -
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We wish to approximate u by a function u , which is a linear combination of basic 
functions chosen from a linearly independent set, as in Equation (9):- 
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i i

i
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Now, when substituted into the differential operator, D, the result of the operations is not 

( )p x . Hence an error or residual will exist as shown in Equation (10) below: - 
 

( ) ( ) ( ( ) ( )) 0   E x R x D u x p x  (10) 
 
The notion in the Collocation is to force the residual to zero in some average sense over 
the domain, as given in Equation (11) below: - 
 

( ) ( ) 0 , 1,2,...,  ix R x W x i n  (11) 
 
where the number of weight functions iW  is exactly equal the number of unknown 
constants ic  in u . The result is a set of n  algebraic equations for the unknown constants 

ic . For Collocation method, the weighting functions are taken from the family of Dirac   
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Hence, the energy in Equation (1) will take the form (Khani, Raji & Nejad, 2009) as in 
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where the number of weight functions Wi is exactly equal the number of 
unknown constants ci in ũ. The result is a set of n algebraic equations for the 
unknown constants ci. For Collocation method, the weighting functions are 
taken from the family of Dirac δ functions in the domain. That is, wi(x) = δ(x–xi). 
The Dirac δ function has the property as shown in Equation in (12) below:-
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functions in the domain. That is, ( ) ( ) i iw x x x . The Dirac   function has the property as 
shown in Equation in (12) below:- 
 

1
( )

0



  



i
i

if x x
x x

other whise
 (12) 

 
The residual function in Equation (10) must be forced to be zero at specific points. 
 
2.3 Application of collocation method 
 

We wish to obtain an approximate solution for this problem in the interval 0 1 x .  
To construct a trial solution, we choose the basic function to polynomial in. The trial 
solution contains four undetermined coefficients and satisfies the conditions for all values 
as given in Equation (13) below: - 
 

  2 3 4 5
1 2 3 41 (1 ) (1 ) (1 ) (1 )         x c x c x c x c x  (13) 

 
Whereas the trial solution satisfies the boundary condition of Equation (6). The accuracy 
of the solution can be improved by increasing the number of its terms. When   is 
introduced into differential equation it yields residual  R x  as in Equation (14) as 
follows:- 
 

 
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2 2 2 3 2 6
1 1 4 3 3 1 4 1 2

2 2 2 3 4 5
3 1 1 2 2 3 3 4 4 2

2 2 3 4 5 5
1 1 2 2 3 3 4 4 4

( ) 2 6 20 28 2 2 6

12 1

1

            

          

        

m

m

R x c c x c x c x c c c c c x

c x M c c x c c x c c x c c x c

M c c x c c x c c x c c x c x

 (14) 

 
Now the problem of finding approximate solution of the problem in the interval 0 1 x  
becomes one adjusting the values of 1 2 3, ,c c c  and 4c . So that residual stays close to zero 
throughout the interval 0 1 x . The basic assumption is that the residual does not deviate 
much from zero between collocation locations. For reaching to this aim, four specific 
points should be chosen. These points are as given in Equations (15) to (19) as follow:- 
 

1 2 3 40, 0, 0, 0,
5 5 5 5

                 
       

R R R R  (15) 

 

 
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1 2 3 4 3 1 4 1 2 1

2
2 4 1 2 3 4 2

2 2
4 1 2 3 4

1 6 12 4 304 6708 76
( ) 2
5 5 25 25 125 3125 25

21194 124 24 124 624 3124
1

15625 125 25 125 625 3125

12491 24 124 624 3124
1 0

78125 25 125 625 3125
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



       

      

      

m

m

R c c c c c c c c c c

c c M c c c c c

c M c c c c

 (16) 

 

                                                                                                   (12)

The residual function in Equation (10) must be forced to be zero at specific 
points.

2.3 Application of collocation method

We wish to obtain an approximate solution for this problem in the interval  
0 < x < 1. 

To construct a trial solution, we choose the basic function to polynomial in. 
The trial solution contains four undetermined coefficients and satisfies the 
conditions for all values as given in Equation (13) below: -
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                                                                 (13)

Whereas the trial solution satisfies the boundary condition of Equation (6). The 
accuracy of the solution can be improved by increasing the number of its terms. 
When θ is introduced into differential equation it yields residual R(x) as in 
Equation (14) as follows:-
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                                (14)

Now the problem of finding approximate solution of the problem in the interval  
0 < x < 1 becomes one adjusting the values of c1, c2, c3 and c4. So that residual 
stays close to zero throughout the interval 0 < x < 1. The basic assumption is that 
the residual does not deviate much from zero between collocation locations. 
For reaching to this aim, four specific points should be chosen. These points are 
as given in Equations (15) to (19) as follow:-
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The residual function in Equation (10) must be forced to be zero at specific points. 
 
2.3 Application of collocation method 
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Now the problem of finding approximate solution of the problem in the interval 0 1 x  
becomes one adjusting the values of 1 2 3, ,c c c  and 4c . So that residual stays close to zero 
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Thus we can obtain coefficient for different value of  , M and m . For example, Using 
Collocation method with 0.1  , M = 1 , =2m  ,   x  is as expressed in Equation (20) below:- 
 

  2 3 4 50.7634481393 0.2024689517 0.0141005165 0.0028024632 0.0171799293     x x x xx  (20) 
 
2.4 Variational iteration method  
To illustrate the basic idea of variational iteration method, we consider the following 
general nonlinear system, as given in Equation (21): - 
 

  Lu Nu g t  (21) 
 
where L  is a linear operator, N  nonlinear operator,  g t a homogeneous term. According 
to the variational iteration method, we can construct the following iteration using the 
formulation in Equation (22) below: - 
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0
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t

n n n nu t u t Lu N u g d  (22) 
 
where   is a general Lagrangian multiplier, which can be identified optimally via the 
variational theory. The subscript n  indicates the nth  approximation and nu  is considered 
as a restricted variation, i.e., 0 nu . 
 
2.5 Application of Variational iteration method 
First we construct a correction functional which reads an expression as in Equation (23) 
as follows:- 
 

                        (17)
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Thus we can obtain coefficient for different value of  , M and m . For example, Using 
Collocation method with 0.1  , M = 1 , =2m  ,   x  is as expressed in Equation (20) below:- 
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2.4 Variational iteration method  
To illustrate the basic idea of variational iteration method, we consider the following 
general nonlinear system, as given in Equation (21): - 
 

  Lu Nu g t  (21) 
 
where L  is a linear operator, N  nonlinear operator,  g t a homogeneous term. According 
to the variational iteration method, we can construct the following iteration using the 
formulation in Equation (22) below: - 
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where   is a general Lagrangian multiplier, which can be identified optimally via the 
variational theory. The subscript n  indicates the nth  approximation and nu  is considered 
as a restricted variation, i.e., 0 nu . 
 
2.5 Application of Variational iteration method 
First we construct a correction functional which reads an expression as in Equation (23) 
as follows:- 
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Thus we can obtain coefficient for different value of  , M and m . For example, Using 
Collocation method with 0.1  , M = 1 , =2m  ,   x  is as expressed in Equation (20) below:- 
 

  2 3 4 50.7634481393 0.2024689517 0.0141005165 0.0028024632 0.0171799293     x x x xx  (20) 
 
2.4 Variational iteration method  
To illustrate the basic idea of variational iteration method, we consider the following 
general nonlinear system, as given in Equation (21): - 
 

  Lu Nu g t  (21) 
 
where L  is a linear operator, N  nonlinear operator,  g t a homogeneous term. According 
to the variational iteration method, we can construct the following iteration using the 
formulation in Equation (22) below: - 
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where   is a general Lagrangian multiplier, which can be identified optimally via the 
variational theory. The subscript n  indicates the nth  approximation and nu  is considered 
as a restricted variation, i.e., 0 nu . 
 
2.5 Application of Variational iteration method 
First we construct a correction functional which reads an expression as in Equation (23) 
as follows:- 
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Thus we can obtain coefficient for different value of β, M and m. For example, 
Using Collocation method with β = 0.1, M = 1, m = 2, θ(x) is as expressed in 
Equation (20) below:-
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Thus we can obtain coefficient for different value of  , M and m . For example, Using 
Collocation method with 0.1  , M = 1 , =2m  ,   x  is as expressed in Equation (20) below:- 
 

  2 3 4 50.7634481393 0.2024689517 0.0141005165 0.0028024632 0.0171799293     x x x xx  (20) 
 
2.4 Variational iteration method  
To illustrate the basic idea of variational iteration method, we consider the following 
general nonlinear system, as given in Equation (21): - 
 

  Lu Nu g t  (21) 
 
where L  is a linear operator, N  nonlinear operator,  g t a homogeneous term. According 
to the variational iteration method, we can construct the following iteration using the 
formulation in Equation (22) below: - 
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where   is a general Lagrangian multiplier, which can be identified optimally via the 
variational theory. The subscript n  indicates the nth  approximation and nu  is considered 
as a restricted variation, i.e., 0 nu . 
 
2.5 Application of Variational iteration method 
First we construct a correction functional which reads an expression as in Equation (23) 
as follows:- 
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2.4 Variational iteration method 

To illustrate the basic idea of variational iteration method, we consider the 
following general nonlinear system, as given in Equation (21): -
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Thus we can obtain coefficient for different value of  , M and m . For example, Using 
Collocation method with 0.1  , M = 1 , =2m  ,   x  is as expressed in Equation (20) below:- 
 

  2 3 4 50.7634481393 0.2024689517 0.0141005165 0.0028024632 0.0171799293     x x x xx  (20) 
 
2.4 Variational iteration method  
To illustrate the basic idea of variational iteration method, we consider the following 
general nonlinear system, as given in Equation (21): - 
 

  Lu Nu g t  (21) 
 
where L  is a linear operator, N  nonlinear operator,  g t a homogeneous term. According 
to the variational iteration method, we can construct the following iteration using the 
formulation in Equation (22) below: - 
 

         1
0
            

t

n n n nu t u t Lu N u g d  (22) 
 
where   is a general Lagrangian multiplier, which can be identified optimally via the 
variational theory. The subscript n  indicates the nth  approximation and nu  is considered 
as a restricted variation, i.e., 0 nu . 
 
2.5 Application of Variational iteration method 
First we construct a correction functional which reads an expression as in Equation (23) 
as follows:- 
 

                                                                                                                   (21)

where L is a linear operator, N nonlinear operator, g(t) a homogeneous term. 
According to the variational iteration method, we can construct the following 
iteration using the formulation in Equation (22) below: -
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2
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



       

      

      

m

m
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Thus we can obtain coefficient for different value of  , M and m . For example, Using 
Collocation method with 0.1  , M = 1 , =2m  ,   x  is as expressed in Equation (20) below:- 
 

  2 3 4 50.7634481393 0.2024689517 0.0141005165 0.0028024632 0.0171799293     x x x xx  (20) 
 
2.4 Variational iteration method  
To illustrate the basic idea of variational iteration method, we consider the following 
general nonlinear system, as given in Equation (21): - 
 

  Lu Nu g t  (21) 
 
where L  is a linear operator, N  nonlinear operator,  g t a homogeneous term. According 
to the variational iteration method, we can construct the following iteration using the 
formulation in Equation (22) below: - 
 

         1
0
            

t

n n n nu t u t Lu N u g d  (22) 
 
where   is a general Lagrangian multiplier, which can be identified optimally via the 
variational theory. The subscript n  indicates the nth  approximation and nu  is considered 
as a restricted variation, i.e., 0 nu . 
 
2.5 Application of Variational iteration method 
First we construct a correction functional which reads an expression as in Equation (23) 
as follows:- 
 

                                                                       (22)

where λ is a general Lagrangian multiplier, which can be identified optimally 
via the variational theory. The subscript n indicates the nth approximation and 
ũn is considered as a restricted variation, i.e., δũn = 0.
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2.5 Application of Variational iteration method

First we construct a correction functional which reads an expression as in 
Equation (23) as follows:-
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Now we start with an arbitrary initial approximation that satisfies the initial condition. 
For example, when 1, 0.4  M  and 0m ,  0 x  is given as in Equation (24) below:- 
 

 0 1 1
 

  
 

x xe ex
e e e e

 (24) 

 
Also, making the above correction functional stationary, we can obtain following 
stationary conditions, as given in Equation (25) below: - 
 

       0, 1 0, 0   
 

     
t x t x

t t t t  (25) 
 
The Lagrangian multiplier can therefore be identified as in Equation (26) below: - 
 

    1
2

     x xe e  (26) 
 
Substituting  0 x  and   into Equation (23) and after some simplifications, we have the 
following expressions as in Equations (27) and (28) : 
 

1 1
1 0

2 2 2

2 2 2 2

(x)=c 0.1192029221 0.1192029221 -0.003337477915e

-0.003337477915e -0.003337477915e +0.002503108436 -0.003337477915e

-0.003337477915e 0.003337477915 +0.003337477915 0.0033

   

   

 

 

 

x x x

x x x x

x x x

e e

e

e e 2 237477915   
xe

 (27) 

where 0
1

c
A

, that 1.124262852A  

 



1 1
2 1

2 2

(x)=c -0.0000035250 sinh( ) 0.106027626 0.106027626

0.002968592 -0.002968592 -0.002968592 -0.002968592
0.000141638cosh(3 3) 0.000141638cosh(3 3)-0.00000396564cosh(3 4)

   

   

  


    

x x

x x x x

x x e e

e e e e
x x x

 (28) 

 
where 1

1
c

B
, that 1.031737135B  

In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
 

    0,  A u f r r  (29) 
 
with the boundary condition of: 
 

, 0,     

uB u r
n

 (30) 

 

                                             (23)

Now we start with an arbitrary initial approximation that satisfies the initial 
condition. For example, when M = 1, β = –0.4 and m = 0, θ0(x) is given as in 
Equation (24) below:-
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Now we start with an arbitrary initial approximation that satisfies the initial condition. 
For example, when 1, 0.4  M  and 0m ,  0 x  is given as in Equation (24) below:- 
 

 0 1 1
 

  
 

x xe ex
e e e e

 (24) 

 
Also, making the above correction functional stationary, we can obtain following 
stationary conditions, as given in Equation (25) below: - 
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The Lagrangian multiplier can therefore be identified as in Equation (26) below: - 
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Substituting  0 x  and   into Equation (23) and after some simplifications, we have the 
following expressions as in Equations (27) and (28) : 
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where 1

1
c

B
, that 1.031737135B  

In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
 

    0,  A u f r r  (29) 
 
with the boundary condition of: 
 

, 0,     

uB u r
n

 (30) 

 

                                                                                                        (24)

Also, making the above correction functional stationary, we can obtain 
following stationary conditions, as given in Equation (25) below: -
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Now we start with an arbitrary initial approximation that satisfies the initial condition. 
For example, when 1, 0.4  M  and 0m ,  0 x  is given as in Equation (24) below:- 
 

 0 1 1
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Also, making the above correction functional stationary, we can obtain following 
stationary conditions, as given in Equation (25) below: - 
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The Lagrangian multiplier can therefore be identified as in Equation (26) below: - 
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Substituting  0 x  and   into Equation (23) and after some simplifications, we have the 
following expressions as in Equations (27) and (28) : 
 

1 1
1 0

2 2 2

2 2 2 2

(x)=c 0.1192029221 0.1192029221 -0.003337477915e

-0.003337477915e -0.003337477915e +0.002503108436 -0.003337477915e

-0.003337477915e 0.003337477915 +0.003337477915 0.0033

   

   

 

 

 

x x x

x x x x

x x x

e e

e

e e 2 237477915   
xe

 (27) 

where 0
1
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where 1

1
c

B
, that 1.031737135B  

In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
 

    0,  A u f r r  (29) 
 
with the boundary condition of: 
 

, 0,     

uB u r
n

 (30) 

 

                                                                             (25)

The Lagrangian multiplier can therefore be identified as in Equation (26) 
below: -
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Now we start with an arbitrary initial approximation that satisfies the initial condition. 
For example, when 1, 0.4  M  and 0m ,  0 x  is given as in Equation (24) below:- 
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 

  
 

x xe ex
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Also, making the above correction functional stationary, we can obtain following 
stationary conditions, as given in Equation (25) below: - 
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Substituting  0 x  and   into Equation (23) and after some simplifications, we have the 
following expressions as in Equations (27) and (28) : 
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where 0
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where 1

1
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B
, that 1.031737135B  

In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
 

    0,  A u f r r  (29) 
 
with the boundary condition of: 
 

, 0,     

uB u r
n

 (30) 

 

                                                                                                        (26)

Substituting θ0(x) and λ into Equation (23) and after some simplifications, we 
have the following expressions as in Equations (27) and (28) :
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Now we start with an arbitrary initial approximation that satisfies the initial condition. 
For example, when 1, 0.4  M  and 0m ,  0 x  is given as in Equation (24) below:- 
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Also, making the above correction functional stationary, we can obtain following 
stationary conditions, as given in Equation (25) below: - 
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where 1
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In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
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with the boundary condition of: 
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                   (27)

where c0 = 
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Also, making the above correction functional stationary, we can obtain following 
stationary conditions, as given in Equation (25) below: - 
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where 0
1

c
A

, that 1.124262852A  

 



1 1
2 1

2 2

(x)=c -0.0000035250 sinh( ) 0.106027626 0.106027626

0.002968592 -0.002968592 -0.002968592 -0.002968592
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   

   

  


    

x x

x x x x

x x e e

e e e e
x x x

 (28) 

 
where 1

1
c

B
, that 1.031737135B  

In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
 

    0,  A u f r r  (29) 
 
with the boundary condition of: 
 

, 0,     

uB u r
n

 (30) 

 

, that A = 1.124262852 
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Now we start with an arbitrary initial approximation that satisfies the initial condition. 
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In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
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with the boundary condition of: 
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               (28)

where c1 = 
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Also, making the above correction functional stationary, we can obtain following 
stationary conditions, as given in Equation (25) below: - 
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In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
 

    0,  A u f r r  (29) 
 
with the boundary condition of: 
 

, 0,     

uB u r
n

 (30) 

 

, that B = 1.031737135

In a similar manner, we will obtain other solutions for different cases M, β and  
m. The results are presented graphically.
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In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
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To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
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                                                                                                           (29)

with the boundary condition of:
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In a similar manner, we will obtain other solutions for different cases M ,   and m . The 
results are presented graphically. 
 
2.6 Analysis of He’s Homotopy perturbation method  

To explain the basic ideas of this method, the following expressions in Equations (29) to 
(30) can be considered:- 
 

    0,  A u f r r  (29) 
 
with the boundary condition of: 
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                                                                                                              (30)

where A is a general differential operator, B a boundary operator, f(r) a known 
analytical function and Γ is the boundary of the domain Ω. A can be divided 
into two parts, which are L and N, where L is linear and   is nonlinear Equation 
(1) can therefore be rewritten as given in Equation (31) below:-
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where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical 
function and   is the boundary of the domain . A can be divided into two parts, which 
are L  and N , where L  is linear and N  is nonlinear Equation (1) can therefore be rewritten 
as given in Equation (31) below:- 
 

      0,   L u N u f r r  (31) 
 
Homotopy perturbation structure is given in Equations (32) and (33) as follows: - 

           0, 1 0              H p p L L u p A f r  (32) 
 
where 
 

   , : 0,1  r p R  (33) 
 
In Equation (4),  0 ,1p  is an embedding parameter and 0u  is the first approximation that 
satisfies the boundary condition. It can be assumed the solution of Equation (4) can be 
written as a power series in p , as in Equation (34) below:- 
 

1 2
0 1 2

0
    


     

n i
i

i
p p p  (34) 

 
and the best approximation for the solution is given in Equation (35) as below:- 
 

1 0 1 2lim        pu  (35) 
 

2.7 Application of Homotopy perturbation method  
In this section, we will apply the HPM to nonlinear ordinary differential system (1). 
according to Equation (7),Using HPM, when 1, 0.4  M  and 0m  leads to an 
expression in Equation (36) below:- 
 

      2, 1 ( ) ( ) (1 0.1 ) 0.1( ) 0                 H p P x x p  (36) 
 
We consider ( ) x  as an expression in Equation (37) below:- 
 

       2
0 1 2     x x p x p x  (37) 

 
By substituting   x  from Equation (37) into Equation (36) and after some simplifications 
and rearrangements based on powers of p -terms, we have the following expressions as 
shown in Equations (38) to (40):- 
 

   
   

0
0 0

0 0

: 0
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 

 
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p x x , (38) 

, 
       
   

1
1 0 1 0 0

1 1

2
0.4 ( ) 0: 0

1 0 , 0

.4

0
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 

        
 




xp x x x

, 
(39) 

                                                                                                 (31)

Homotopy perturbation structure is given in Equations (32) and (33) as follows:-
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where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical 
function and   is the boundary of the domain . A can be divided into two parts, which 
are L  and N , where L  is linear and N  is nonlinear Equation (1) can therefore be rewritten 
as given in Equation (31) below:- 
 

      0,   L u N u f r r  (31) 
 
Homotopy perturbation structure is given in Equations (32) and (33) as follows: - 

           0, 1 0              H p p L L u p A f r  (32) 
 
where 
 

   , : 0,1  r p R  (33) 
 
In Equation (4),  0 ,1p  is an embedding parameter and 0u  is the first approximation that 
satisfies the boundary condition. It can be assumed the solution of Equation (4) can be 
written as a power series in p , as in Equation (34) below:- 
 

1 2
0 1 2

0
    


     

n i
i

i
p p p  (34) 

 
and the best approximation for the solution is given in Equation (35) as below:- 
 

1 0 1 2lim        pu  (35) 
 

2.7 Application of Homotopy perturbation method  
In this section, we will apply the HPM to nonlinear ordinary differential system (1). 
according to Equation (7),Using HPM, when 1, 0.4  M  and 0m  leads to an 
expression in Equation (36) below:- 
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We consider ( ) x  as an expression in Equation (37) below:- 
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0 1 2     x x p x p x  (37) 

 
By substituting   x  from Equation (37) into Equation (36) and after some simplifications 
and rearrangements based on powers of p -terms, we have the following expressions as 
shown in Equations (38) to (40):- 
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                                                                                                          (33)

In Equation (4), p∈ [0, 1] is an embedding parameter and u0 is the first 
approximation that satisfies the boundary condition. It can be assumed the 
solution of Equation (4) can be written as a power series in p, as in Equation 
(34) below:-
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where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical 
function and   is the boundary of the domain . A can be divided into two parts, which 
are L  and N , where L  is linear and N  is nonlinear Equation (1) can therefore be rewritten 
as given in Equation (31) below:- 
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In this section, we will apply the HPM to nonlinear ordinary differential system (1). 
according to Equation (7),Using HPM, when 1, 0.4  M  and 0m  leads to an 
expression in Equation (36) below:- 
 

      2, 1 ( ) ( ) (1 0.1 ) 0.1( ) 0                 H p P x x p  (36) 
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and rearrangements based on powers of p -terms, we have the following expressions as 
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                                                                                            (34)
 
and the best approximation for the solution is given in Equation (35) as below:-
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where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical 
function and   is the boundary of the domain . A can be divided into two parts, which 
are L  and N , where L  is linear and N  is nonlinear Equation (1) can therefore be rewritten 
as given in Equation (31) below:- 
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2.7 Application of Homotopy perturbation method  
In this section, we will apply the HPM to nonlinear ordinary differential system (1). 
according to Equation (7),Using HPM, when 1, 0.4  M  and 0m  leads to an 
expression in Equation (36) below:- 
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By substituting   x  from Equation (37) into Equation (36) and after some simplifications 
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                                                                                                  (35)

2.7 Application of Homotopy perturbation method 

In this section, we will apply the HPM to nonlinear ordinary differential system 
(1). according to Equation (7),Using HPM, when M = 1, β = –0.4 and m = 0 leads 
to an expression in Equation (36) below:-
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where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical 
function and   is the boundary of the domain . A can be divided into two parts, which 
are L  and N , where L  is linear and N  is nonlinear Equation (1) can therefore be rewritten 
as given in Equation (31) below:- 
 

      0,   L u N u f r r  (31) 
 
Homotopy perturbation structure is given in Equations (32) and (33) as follows: - 

           0, 1 0              H p p L L u p A f r  (32) 
 
where 
 

   , : 0,1  r p R  (33) 
 
In Equation (4),  0 ,1p  is an embedding parameter and 0u  is the first approximation that 
satisfies the boundary condition. It can be assumed the solution of Equation (4) can be 
written as a power series in p , as in Equation (34) below:- 
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and the best approximation for the solution is given in Equation (35) as below:- 
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2.7 Application of Homotopy perturbation method  
In this section, we will apply the HPM to nonlinear ordinary differential system (1). 
according to Equation (7),Using HPM, when 1, 0.4  M  and 0m  leads to an 
expression in Equation (36) below:- 
 

      2, 1 ( ) ( ) (1 0.1 ) 0.1( ) 0                 H p P x x p  (36) 
 
We consider ( ) x  as an expression in Equation (37) below:- 
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By substituting   x  from Equation (37) into Equation (36) and after some simplifications 
and rearrangements based on powers of p -terms, we have the following expressions as 
shown in Equations (38) to (40):- 
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                                                 (36)

We consider θ(x) as an expression in Equation (37) below:-
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where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical 
function and   is the boundary of the domain . A can be divided into two parts, which 
are L  and N , where L  is linear and N  is nonlinear Equation (1) can therefore be rewritten 
as given in Equation (31) below:- 
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where 
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In Equation (4),  0 ,1p  is an embedding parameter and 0u  is the first approximation that 
satisfies the boundary condition. It can be assumed the solution of Equation (4) can be 
written as a power series in p , as in Equation (34) below:- 
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and the best approximation for the solution is given in Equation (35) as below:- 
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2.7 Application of Homotopy perturbation method  
In this section, we will apply the HPM to nonlinear ordinary differential system (1). 
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By substituting θ(x) from Equation (37) into Equation (36) and after some 
simplifications and rearrangements based on powers of p-terms, we have the 
following expressions as shown in Equations (38) to (40):-
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where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical 
function and   is the boundary of the domain . A can be divided into two parts, which 
are L  and N , where L  is linear and N  is nonlinear Equation (1) can therefore be rewritten 
as given in Equation (31) below:- 
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and the best approximation for the solution is given in Equation (35) as below:- 
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2.7 Application of Homotopy perturbation method  
In this section, we will apply the HPM to nonlinear ordinary differential system (1). 
according to Equation (7),Using HPM, when 1, 0.4  M  and 0m  leads to an 
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where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical 
function and   is the boundary of the domain . A can be divided into two parts, which 
are L  and N , where L  is linear and N  is nonlinear Equation (1) can therefore be rewritten 
as given in Equation (31) below:- 
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where 
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and the best approximation for the solution is given in Equation (35) as below:- 
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2.7 Application of Homotopy perturbation method  
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Solving Equations (38) to (40) with boundary conditions, we have the following 
expressions given in Equations (41) to (44):- 
 

 0 1 1


  
 

x xe ex
e e e e

 (41) 

 

     

 

4 4

1 1 2 1 1 4 4 2 1 2 1 1 4 4 2

2 2 4

4 2

1 14
15 2 2 2 2

1

30 15




     

 

  
  

         



  

x x

x x

e e e e
x

e e e e e e e e e e e e e e e e e e e e

e e
e e

 

 

(40) 

   

 

5 9 7 3 1

2 1 2 1 6 1 1 2 1 8 2 8 4 6

3 2
5 4 6 1 4 1 2 3

8 2 4 6

76 5 5 33 91
225 6 4 4 4 6 4

... 32 32 27 12 ... 12
4 1 6 4


 

    

 
   

    


        

           

x

x
x x x x x

e e e e e e e
x

e e e e e e e e e e e e ee ee ee

e e e e xe x e
e e e e

 (44) 

 
The solution of this equation, when 1p , will be as follows: 
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results are presented in next section.  
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an analytical solution of the nonlinear fin problem. The results are compared with other 
analytical methods such as VIM and HPM. For validation all these results are compared 
with the numerical solution. Figures 1-3 and Table 1 show the temperature distribution 
with the axial distance along the fin for the three methods. It is interesting to note that 
collocation method is very close to the numerical results and the results of HPM and VIM 
are significantly in error.  
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In a similar manner, we will obtain other solutions for different cases M, β and  
m. The results are presented in next section. 
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Figure 1. Comparison between the CM, VIM, HPM and numerical solution for 
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Figure 2. Comparison between the CM, VIM, HPM and numerical solution for 
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Figure 3. Comparison between the CM, VIM, HPM and numerical solution for 
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Figure 1. Comparison between the CM, VIM, HPM and numerical solution for  
m = 0, M = 1, β = –0.4
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Figure 3. Comparison between the CM, VIM, HPM and numerical solution for  
m = 3, M = 1, β = –0.4

Table 1 The results of CM, VIM, HPM, and numerical methods for  
m = 2, M = 1, β = –0.4
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Table 1 The results of CM, VIM, HPM, and numerical methods for 
2, 1, 0.4   m M  

x  CM VIM HPM NUM 
ERROR 

VIM 
ERROR 

HPM 
ERROR 

CM 

0  0.69636640  0.68655496  0.9250000  0.69340454  0.00684958  0.23159545  0.00296185  
0.1  0.6984550  0.68900216  0.92451250  0.69571666  0.00671450  0.22879583  0.00273842  
0.2  0.7050589  0.69641743  0.92320000  0.70271768  0.00630025  0.22048231  0.00234130  
0.3  0.7165880  0.70902464  0.92151250  0.71460737  0.00558272  0.20690512  0.00198068  
0.4  0.7334326  0.72720630  0.92020000  0.73173911  0.00453281  0.18846088  0.00169357  
0.5  0.7561004  0.75151812  0.92031250  0.75465474  0.00313661  0.16565775  0.00144573  
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in predicting   for different values of thermal conductivity (  ), thermo-geometric fin 
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4.0 CONCLUSION 
In this paper, nonlinear heat transfer equations for fin with temperature-dependent 
thermal conductivity and heat transfer coefficient are presented and the CM has been 
successfully applied to find the most exact analytical solution. Furthermore, the obtained 
solutions by collocation method are compared with VIM, HPM and numerically 
solutions.  The results demonstrate that the CM is powerful mathematical tools and has 
excellent agreement with numerical outcomes. Also accuracy of the solution can be 
increased by increasing the statements of the trial functions. The CM is very effective, 
simpler and offers superior accuracy compared with the variation iteration method and 
Homotopy Perturbation Method. It does not need any perturbation, linearization or small 
parameter versus Homotopy Perturbation Method and Variation iteration method. 
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4.0 CONCLUSION

In this paper, nonlinear heat transfer equations for fin with temperature-
dependent thermal conductivity and heat transfer coefficient are presented and 
the CM has been successfully applied to find the most exact analytical solution. 
Furthermore, the obtained solutions by collocation method are compared with 
VIM, HPM and numerically solutions.  The results demonstrate that the CM 
is powerful mathematical tools and has excellent agreement with numerical 
outcomes. Also accuracy of the solution can be increased by increasing the 
statements of the trial functions. The CM is very effective, simpler and offers 
superior accuracy compared with the variation iteration method and Homotopy 
Perturbation Method. It does not need any perturbation, linearization or small 
parameter versus Homotopy Perturbation Method and Variation iteration 
method.
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