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ABSTRACT

This paper present real time control of an inverted pendulum. The system is inherently 
unstable and multivariable. It is mostly used in laboratories to study, verify and validate new 
control ideas. The dynamic model of the system was derived based on Lagrange approach and 
it was linearized. Linear Quadratic Regulator (LQR) controller was designed to stabilize the 
system in an upright position. The robustness of the control algorithm was tested based on 
disturbance rejection. Simulation and experimental results showed a good performance was 
achieved and the controller is robust to external disturbances.
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1.0 INTRODUCTION

An inverted pendulum is a multivariable, an under-actuated, nonlinear, and 
unstable system, (Mus & Tovornik, 2006), (Riachy et al, 2007), (Jerome et al, 
2013). Due to these dynamics, it is mostly used by researchers to investigate the 
control algorithms. Modelling and control of the nonlinear inverted pendulum 
system is one of the major areas of research with lots of potentials in the field 
of robotics and automation. Various researchers have proposed different 
control algorithms and techniques for swing up, tracking and stabilization of 
an inverted pendulum.

Balancing an inverted pendulum mobile robot using LQG and LQR has been 
proposed by Hauser and Saccon (2005), and their performances were compared. 
Modelling and a predictive controller based on the nonlinear model of the 
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system have been presented in Chalupa (2008). Similarly, Prasad (2014), Singh 
and Yadav (2012) and Gupta (2014) compared the stabilization and swing up 
control performances of LQR and PID controllers for an inverted pendulum. 
The stabilization control of an inverted pendulum using Pole Placement and 
LQR has been presented in Kumar et al (2012), a comparison of the control 
algorithms has also been presented.

Furthermore, an MODE-based optimized LQR developed in Tijani (2013) shows 
a superior performance. Singh et al (2014) used a modified PSO based PID 
sliding mode for swing up and stabilization control of an inverted pendulum. 
In addition, Chakraborty et al (2013) investigated the optimization of PID 
controller using Genetic Algorithm. A dynamic modelling and optimal control 
of wheel inverted pendulum were proposed in Shamsudin et al (2013) using 
an optimally tuned partial-state PID. Swing up and stabilization of double 
inverted pendulum using LQR and LQR based fuzzy was proposed in Bhangal 
(2013), and their performances were analyzed and compared. An intelligent 
control algorithm has also been proposed in A-hadithi (2012) and implemented 
for swing up and stabilization of a double inverted pendulum system. 

The combinations of intelligent and conventional control have shown good 
performances and robustness of the control algorithms. An Adaptive Neural 
Network for motion control of a wheeled, inverted pendulum has also been 
presented in Yang et al (2014). In Chalupa and Bobal (2008), Model Predictive 
Controller has been proposed. A novel PSO based Sliding Mode Control for 
stabilization of an inverted pendulum was presented by Singh et al (2014). In 
Brisilla and Sankaranarayanan (2015), a stabilization of an inverted pendulum 
using a nonlinear control algorithm has been presented.

However, to implement a simple control algorithm and obtained stability under 
external disturbances is a big challenging task. Thus, using LQR the stability 
and control of all system poles are guaranteed. This paper proposed LQR for 
real time stabilization of an inverted pendulum under wind disturbances of 
magnitude of 0.2 N. Time response specification and level of disturbances 
rejections were used as the performance index of the control algorithms.  
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2.0 SYSTEM DESCRIPTION

In this part, the inverted pendulum dynamics is presented.

2.1 An Inverted Pendulum System

In this work, the laboratory scale feedback digital pendulum system version 
33-000-V73 was used. The system  consists of the following parts; the cart, two 
pendulums, a rail, and a D.C motor. The pendulum is hinged at the center 
of the cart in a manner that they can rotate freely for 360°. The cart can move 
freely horizontally on the rail with the aid of the D.C motor. The mechanical 
system is as shown in Figure1. 
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Figure 1. The laboratory-based Inverted Pendulum 
Figure 1. The laboratory-based Inverted Pendulum

When the pendulum is in the vertical position, the system is unstable and when 
the pendulum is in a downward position, the system is completely stable. The 
pendulum is completely unstable for small deviations from the equilibrium 
position. Figure 2 shows the activity zone of the inverted pendulum within 
which control can be achieved. 
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Figure 2. Activity zone of the control algorithm 

 
2.1.1 System Modelling 
 
The system schematics diagram is shown in Figure 3, with θ, x, and f (t) as pendulum 
angle, the cart displacement and applied force in (N) respectively. M is the mass of the 
cart (kg), l is the pendulum length (m), and I is the moment of inertia of the rod from the 
centre of mass (kgm2). C and b are the translation and viscous damping of the cart 
(Ns/m) and that of the pendulum (Nm/rad) respectively (Zhang and Tu, 2006).  
 

 
Figure 3. Schematic diagram of the pendulum-cart system 

 
The energy in the system is simply its kinetic energy and potential energy. The total 
kinetic energy of the system can be expressed as in Equation (1);  
 

                        (1) 
 
where T is the total kinetic energy, TM is the kinetic energy of the cart and Tm is the 
kinetic energy of the pendulum, as expressed in Equations (2) to (3) as follows:-  

Figure 2. Activity zone of the control algorithm
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Figure 3. Schematic diagram of the pendulum-cart system

The energy in the system is simply its kinetic energy and potential energy. The 
total kinetic energy of the system can be expressed as in Equation (1); 

T = TM + Tm             (1)

where T is the total kinetic energy, TM is the kinetic energy of the cart and Tm 
is the kinetic energy of the pendulum, as expressed in Equations (2) to (3) as 
follows:- 
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where V is the velocity of the pendulum’s centre of mass and I is the moment of inertia 
of the pendulum around the centre of mass and ω is the angular velocity of the 
pendulum. Also, the position vector can be given as in Equation (4) below:- 
 

                                                                                             (4) 
 
And the velocity vector can be express as given in Equation (5) below:- 
 

                                                                               (5)    
 
Putting   , the kinetic energy of the pendulum is given as in Equation (6) below:- 
 

                                   (6) 
 
Hence, the total kinetic energy of the system is as given in Equation (7) as follow:- 
 

   (7) 
 
In addition, the total potential energy of the system is given as in Equation (8) below:- 
 

                                                                                                                   (8) 
 
where  is the potential energy of the cart and  is the potential energy of the 
pendulum. But,  VM = 0, and the term Vm is given as in the expression in Equation (9) 
below:- 
 

                                                                                                                (9) 
 
Therefore, the total potential energy can be written as in Equation (10) below:- 
 

                                                                                            (10) 
 
The system dynamics equation of motion can be derive using Lagrange’s equation as 
written in Equation (11) by Mishra and Chandra (2014) below:- 
 

                                                                                                          (11) 
 
where, (L) is expressed in form of kinetic energy and potential energy of the system 
given in Equation (12) below:- 
 

                                                                                                                     (12) 

                                                                                                                  (2)

Journal of Engineering and Technology 

 
 
ISSN: 2180-3811    Vol. 9 No. 2  July – December 2018  

 
                                                                                                                     (2) 

 
                                                                                                       (3) 

 
where V is the velocity of the pendulum’s centre of mass and I is the moment of inertia 
of the pendulum around the centre of mass and ω is the angular velocity of the 
pendulum. Also, the position vector can be given as in Equation (4) below:- 
 

                                                                                             (4) 
 
And the velocity vector can be express as given in Equation (5) below:- 
 

                                                                               (5)    
 
Putting   , the kinetic energy of the pendulum is given as in Equation (6) below:- 
 

                                   (6) 
 
Hence, the total kinetic energy of the system is as given in Equation (7) as follow:- 
 

   (7) 
 
In addition, the total potential energy of the system is given as in Equation (8) below:- 
 

                                                                                                                   (8) 
 
where  is the potential energy of the cart and  is the potential energy of the 
pendulum. But,  VM = 0, and the term Vm is given as in the expression in Equation (9) 
below:- 
 

                                                                                                                (9) 
 
Therefore, the total potential energy can be written as in Equation (10) below:- 
 

                                                                                            (10) 
 
The system dynamics equation of motion can be derive using Lagrange’s equation as 
written in Equation (11) by Mishra and Chandra (2014) below:- 
 

                                                                                                          (11) 
 
where, (L) is expressed in form of kinetic energy and potential energy of the system 
given in Equation (12) below:- 
 

                                                                                                                     (12) 

                                                                                                        (3)

where V is the velocity of the pendulum’s centre of mass and I is the moment 
of inertia of the pendulum around the centre of mass and ω is the angular 
velocity of the pendulum. Also, the position vector can be given as in Equation 
(4) below:-
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And the velocity vector can be express as given in Equation (5) below:-
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, the kinetic energy of the pendulum is given as in Equation (6) 
below:-
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Hence, the total kinetic energy of the system is as given in Equation (7) as 
follow:-
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In addition, the total potential energy of the system is given as in Equation (8) 
below:-
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where VM is the potential energy of the cart and Vm is the potential energy of 
the pendulum. But, VM = 0, and the term Vm is given as in the expression in 
Equation (9) below:-
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The system dynamics equation of motion can be derive using Lagrange’s 
equation as written in Equation (11) by Mishra and Chandra (2014) below:-
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where V is the velocity of the pendulum’s centre of mass and I is the moment of inertia 
of the pendulum around the centre of mass and ω is the angular velocity of the 
pendulum. Also, the position vector can be given as in Equation (4) below:- 
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And the velocity vector can be express as given in Equation (5) below:- 
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Putting   , the kinetic energy of the pendulum is given as in Equation (6) below:- 
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Hence, the total kinetic energy of the system is as given in Equation (7) as follow:- 
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In addition, the total potential energy of the system is given as in Equation (8) below:- 
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where  is the potential energy of the cart and  is the potential energy of the 
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below:- 
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Therefore, the total potential energy can be written as in Equation (10) below:- 
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The system dynamics equation of motion can be derive using Lagrange’s equation as 
written in Equation (11) by Mishra and Chandra (2014) below:- 
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where, (L) is expressed in form of kinetic energy and potential energy of the system 
given in Equation (12) below:- 
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Substituting T and V in Equation (12), it is obtained as in Equation (13) below:-
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Substituting T and V in Equation (12), it is obtained as in Equation (13) below:- 
 

 (13) 
 
Substituting Equation (13) into (11) and solving for the partial derivatives yields an 
expression in Equation (14) below:- 
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The above equation can be represented as in the expression in Equation (15) below:- 
 

          (15) 
 
Moreover,  is given as in Equation (16) below:- 
 

                                                                                                         (16) 
 
Substituting Equation (13) into (16) and solve for the partial derivatives yields an 
expression in Equation (17) as follows:- 
 

                                   (17) 
 
Also, Equation (17) can be further simplified as given in Equation (18) below:- 
 

             (18) 
 
After re-arranging, the overall dynamic equations of the system were obtained as in 
Equation (19) below:- 
 

                                                     (19) 

 
2.1.1.1 Model linearization 
 
To linearize the nonlinear system, two points have to be considered for equilibrium 
points. The pendulum in the upright position (unstable, ) and pendulum in the 
downward position (stable, ). This can be achieved by Taylor’s series 
approximation, for a small angle deviation around an equilibrium point  as expressed 
in Equation (20 below:- 
 

                                                                                                                    (20) 
 
Taylor’s series first order approximation is given as in Equation (21) below: 

                                                                                                     (21) 
 

 (13)

Substituting Equation (13) into (11) and solving for the partial derivatives 
yields an expression in Equation (14) below:-
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Moreover, θ is given as in Equation (16) below:-
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After re-arranging, the overall dynamic equations of the system were obtained 
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2.1.1.1 Model linearization

To linearize the nonlinear system, two points have to be considered for 
equilibrium points. The pendulum in the upright position (unstable, θ = 0) 
and pendulum in the downward position (stable, θ = π). This can be achieved 
by Taylor’s series approximation, for a small angle deviation around an 
equilibrium point θ0 as expressed in Equation (20 below:-
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To linearize the nonlinear system, two points have to be considered for equilibrium 
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                                                                                                        (21)

where 
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where , a small angle deviation from equilibrium and  higher order 
neglected. Pendulum in upright position (unstable, ). The following functions can 
be linearized as  

 
 

 
Thus, substituting these into Equation (19), the motion equations are obtained as given 
in Equation (22) below:- 
 

                                                                       (22) 

 
Pendulum downward position (stable, ). The following functions can also be 
linearized as :- 

 
 

 
 
Thus, the motion equations are obtained as expressed in Equations (23) below:- 

                                                                       (23) 

 
Hence, the system equations are represented in state space form as given in Equations 
(24) and (25) as follow:- 

                                                                                                                 (24) 
 

                                                                                                                          (25) 
 
The states vector of the system can be assigned as in Equation (26) below:- 

                                                                                                             (26) 

 
where, ,  are the pendulum angle, angular velocity, Cart displacement and 
velocity of the Cart respectably (Kizir et al, 2010). Hence the dynamics equations can 
be represented in state space form as given in Equations (27) and (28) below:- 
 

                                   (27) 

 

          (28) 

, a small angle deviation from equilibrium and 
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order neglected. Pendulum in upright position (unstable, 
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Thus, substituting these into Equation (19), the motion equations are obtained 
as given in Equation (22) below:-
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          (28) 

                                                                    (22)

Pendulum downward position (stable, θ = π). The following functions can also 
be linearized as :-
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Thus, the motion equations are obtained as expressed in Equations (23) below:-
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Hence, the system equations are represented in state space form as given in 
Equations (24) and (25) as follow:-
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3.0 FULL STATE FEEDBACK CONTROLLER DESIGN

In this section, LQR controller was designed and implemented on real time 
system. Controllability, observability and stability test was carried out before 
applying the controller.

3.1.1 Controllability Test

The system is said to be controllable if an input to the plant can take all 
the states from a desired initial state to a desired final state in a final time 
interval, otherwise is uncontrollable. Table 1 show the system parameters. The 
controllability matrix is given as in Equation (29) below:-
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For controllability, the rank (Mc) of the matrix must be equal to the number of states of 
the system. Using the MATLAB command, Mc was obtained to be 4, hence, the system 
is controllable.  
 
3.1.2 Observability Test 
 
If all states of a system can be determined from an observation of y(t) over a finite time 
interval, the system is completely observable otherwise is unobservable (Ogata, 1997). 
The observability matrix is given as in Equation (30):- 
 

                                                                     (30) 
 
For observability, the rank (Mo) of the matrix must be equal to the number of the 
outputs of the system. Using the MATLAB command, the Mo was obtained as 4 hence 
the system is completely observable. 
 
3.1.3 Stability Test 
 
Inverted pendulum system is an unstable system, thus before applying any control 
algorithms there is need to test the stability of the system before and after control action 
so that the performance of the controller can be observed. Using the pole zero map 
shown in Figure 4, it can be observed that some poles of the system is in the right hand 
plant hence the system is unstable.  

Table 1. System Parameters 
 

 

Parameter Value 
Mass of cart (M) 
Mass of pole (m) 
Length of pole (l) 
Moment of inertia of the pole (I) 
Coefficient of friction of cart (b) 
Damping coefficient of pendulum (d) 
Gravity (g) 

2.4 kg 
0.23 kg 
0.38 m 
0.099 kg/m2 
0.05 Ns/m 
0.005 Nms/rad 
9.8 m/s2 

                                                                                            (29)
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For observability, the rank (Mo) of the matrix must be equal to the number of 
the outputs of the system. Using the MATLAB command, the Mo was obtained 
as 4 hence the system is completely observable.

3.1.3 Stability Test

Inverted pendulum system is an unstable system, thus before applying any 
control algorithms there is need to test the stability of the system before and 
after control action so that the performance of the controller can be observed. 
Using the pole zero map shown in Figure 4, it can be observed that some poles 
of the system is in the right hand plant hence the system is unstable. 
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Figure 4. Poles and zero map of the open loop system 

 
 
3.2  LQR Control Design 
 
The LQR is a full state feedback controller that is usually used in industries for 
mechanical system control. The control of inverted pendulum using classical PID is 
mostly difficult because the system has higher state variables than the controller. Hence, 
as shown in Figure 5, a full state feedback controller is most suitable (Hauser and 
Saccon, 2005) and (Tahir et al, 2017). 
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Figure 5. Typical LQR control system 

In this control technique, a control law is selected ( )u x  to regulate the state x  and 
minimize the performance index, as written in Equation (31):- 

0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t


                                                                                    (31) 

where J is the performance index function,  are weight matrices for 
the state variable  and control variable  respectively. Q and R are the semi-
positive definite matrix and positive definite matrix respectively (Ogata, 2010) and 
(Tahir et al, 2016). Thus, the gain vector K can be obtained to satisfy the feedback 
control law given as in (Tahir et al, 2017). 
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where J is the performance index function, 
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 are weight 
matrices for the state variable x(t) and control variable u(t) respectively. Q and 
R are the semi-positive definite matrix and positive definite matrix respectively 
(Ogata, 2010) and (Tahir et al, 2016). Thus, the gain vector K can be obtained to 
satisfy the feedback control law given as in (Tahir et al, 2017).

Moreover, the control variable can be expressed as in Equation (32) below:-
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Moreover, the control variable can be expressed as in Equation (32) below:- 
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where P is the solution of the Riccati equation given as in Equation (33) as follow:- 
 

                                                                               (33) 
 
In which, the gain factor, K is expressed in Equation (34) as below:- 
 

                                                                                                                 (34) 
 
Bryson’s rule states that a first choice of matrices Q and R is to select the matrices 
diagonals given as shown in Equations (35) and (36) below:- 
 

                                        (35) 

 

                                       (36) 

 

 are the maximum expected value of the state and that of control signal 
respectively (Lingyan et al, 2009). Therefore,  and  parameters were used in the 
following forms, as given in Equation (37) below:- 
 

                                                                                       (37) 

While, R can be expressed as in Equation (38) below:- 

                                                                                                                           (38) 

 

The cart is constrained to lie between  and the input to the motor 
is constrained to lie between . Thus, , is the 
weight due to angle, assuming a 0.2 rad maximum deviation expected from the upright 
position. , is the weight due to the position of the cart and was assume 

that the cart should not exceed 0.2m from the centre of the rail. , is the 
weight due to the control voltage. The close loop controller gain for both simulation and 
experiment were obtained as K = [58.2411   22.8208 -12.5000 -12.2993] and K = [44.72   
200.8 -49.77 -27.38] respectably. 
 
 
 

                                                                                                 (32)

where P is the solution of the Riccati equation given as in Equation (33) as 
follow:-
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is the weight due to angle, assuming a 0.2 rad maximum deviation expected 
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, is the weight due to the control voltage. The close 
loop controller gain for both simulation and experiment were obtained as 
K = [58.2411   22.8208 -12.5000 -12.2993] and K = [44.72   200.8 -49.77 -27.38] 
respectably.

4.0 RESULTS AND DISCUSSION

The real time optimal control implementation of an inverted pendulum was 
presented. LQR was designed and implemented for swing up and stabilization 
control of an inverted pendulum. A Gaussian distributed noise and wind 
disturbance of magnitude 0.2 N was used to test the robustness of the control 
algorithms in both simulations and experiments respectively..

4.1 Simulation Results

The system is completely stable after applying the controller. Figure 6 shows the 
poles zeros map of the system, with details of the poles, damping, frequency, 
and overshoot of the system. 
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The cart position, swing angle and control signal of the system were as shown 
in Figure 7, simulated with an initial condition of 0.1rad. The systems stabilized 
at 2 sec with 0.262 m undershoot of cart position and 0.08 m of the swing angle. 
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In simulation, a Gaussian distributed noise of mean = 0.0001 and variance = 0.00001 
was injected into the control system, at a sampling time of 0.5sec. As shown in Figure 
8, the performance of the controller remained the same however, some negligible 
amplitude and frequency variations can be observed in the system.
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Figure 8. Disturbance injection response of the system with LQR 

 
4.1.1 Experimental Results 
 
The experiment was conducted at simulation and control laboratory Glasgow 
Caledonian University UK. Figures 9 and 10 showed the photos of the real time 
experiment with swing up and stabilizing controller respectably, using the feedback 
instruments laboratory scale inverted pendulum system. 
 
The algorithm was implemented in real time, the control signal, swing angle, and cart 
position is as shown in Figure 11, in which the pendula swing up and stabilized within 
the constraints voltage. It was observed that the controller shows a very good 
performance as it stabilized the system within the stabilization zone of 0.2 m. A good 
stabilization and swing up control was also achieved as in Figure 12, with the control 
action only starting at 13 sec. This is also within the stabilization zone of the system. 
 
In addition, the experiment was conducted under a wind disturbance magnitude of 0.2 N 
and a very good performance was also achieved as shown in Figure 13 but from the 
control signal it can be observed that under disturbance, more voltage was consumed. 
 
 

Figure 8. Disturbance injection response of the system with LQR



ISSN: 2180-3811         Vol. 9     No. 2    July - December 2018

Journal of Engineering and Technology 

54

4.1.1 Experimental Results

The experiment was conducted at simulation and control laboratory Glasgow 
Caledonian University UK. Figures 9 and 10 showed the photos of the real 
time experiment with swing up and stabilizing controller respectably, using 
the feedback instruments laboratory scale inverted pendulum system.

The algorithm was implemented in real time, the control signal, swing angle, 
and cart position is as shown in Figure 11, in which the pendula swing up and 
stabilized within the constraints voltage. It was observed that the controller 
shows a very good performance as it stabilized the system within the 
stabilization zone of 0.2 m. A good stabilization and swing up control was also 
achieved as in Figure 12, with the control action only starting at 13 sec. This is 
also within the stabilization zone of the system.

In addition, the experiment was conducted under a wind disturbance magnitude 
of 0.2 N and a very good performance was also achieved as shown in Figure 
13 but from the control signal it can be observed that under disturbance, more 
voltage was consumed.Journal of Engineering and Technology 
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Figure 9. Pendulum in swing-up mode by swinging controller 
 

 
 

Figure 10. Pendulum in an upright position controlled by stabilizing controller 
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Figure 9. Pendulum in swing-up mode by swinging controller
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Figure 10. Pendulum in an upright position controlled by stabilizing controller 
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Figure 11. LQR stabilizing action experimental results 

Figure 10. Pendulum in an upright position controlled by stabilizing controller
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Figure 10. Pendulum in an upright position controlled by stabilizing controller 
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5.0 CONCLUSION

In this paper, nonlinear inverted pendulum was linearized using Taylor 
series approach and LQR controller was designed to swing up and stabilize 
the pendulam. It was also implemented on real time system under wind 
disturbance. Time response specification and level of disturbances rejection 
were used as the performance index. Based on Simulation and experimental 
results, a very good performance was achieved and the controller is robust 
to external disturbances. To further reduce the oscillations amplitude and 
frequencies, enhance and improve the modelling and control for real time 
accuracies, frictional coefficients should be taking into consideration.
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