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ABSTRACT

Condition-based maintenance strategy is considered popular and received 
high demand in industry to ensure high availability and reliability of 
equipment in the plant.  Prognostic is one of an important functions in 
condition-based maintenance strategy which is used to predict the future 
condition of the observed and estimate the remaining useful lifetime (RUL) 
based on the current and historical condition data.  Due to the fact that 
most of the current automated equipment in industry has the capability 
to capture and store the condition and process data during operation, the 
research aimed to formulate a prognostic model based on the integration 
of the data and predict the series of future condition.  This paper presents 
a data-driven prognostic model to predict the estimated RUL by using 
condition and process data which are taken from a single unit of equipment. 
The structure of prognostic model is presented and two time series methods 
are employed namely Artifical Neural Network and Double Exponential 
Smoothing in prognostic process. The feasibility of this prognostic model 
was demonstrated with applying real data from industrial equipment. The 
result from the model shows that both of the methods are able to extrapolate 
the extimated RUL and give useful information to the maintenance 
department to take an appropriate decision.

KEYWORDS: Prognostic; Remaining useful lifetime; Condition-based 
maintenance; Artifical neural network; Double exponential smoothing

1.0 introDuction

In recent years, prognostic function has been studied intensely in 
order to support predictive condition-based maintenance program. 
Even though many prognostic method and tool have been developed, 
prognostic were not fully implemented  in industry for the purpose of 
the maintenance (Muller, Suhner, & Iung, 2008). The major setback was 
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because there were some difficulties in seeking good reference for the 
implementation of prognostic in the real industry environment (Heng, 
Zhang, Tan, & Mathew, 2009). Today, many advanced industrial 
equipment are having sensor system which are capable of monitoring 
the operational condition continuously and storing its data in database 
(Dong & He, 2007).  However, due to the lack of understanding about 
the capability of the equipment, data captured are yet to be further 
utilized. As these data are typically correlated with the severity of the 
underlying degradation performance (Elwany & Gebraeel, 2008). Thus, 
this paper aims to provide a data driven prognostic model based on 
the existing condition monitoring and operation data to predict the 
equipment failure and its residual time. 

2.0 overvieW of Prognostic

Prognostic can be referred as the ability to predict how much time is 
left or Remaining Useful Life (RUL) before a failure occurs given that 
an observed equipment condition variable and past operation profile 
(Jardine, Lin, & Banjevic, 2006). In general, prognostic can be classified 
into three main approaches namely: physical model-based, experience-
based and data-driven based (Tran, Yang, & Tan, 2009).  Physical 
model-based applies mathematical models which are constructed 
from the first principle of system’s failure modes (Tran et al., 2008). 
Normally, it uses a residual to evaluate performance accuracy between 
sensed measurement of equipment and the output of mathematical 
models. The approach is the most preferable method when dealing 
with time consuming in collecting sufficient quantity and the quality 
of operating data. However, to develop an accurate mathematical 
model, a comprehensive mechanistic knowledge and theory of 
monitored equipment are highly required and most of the models are 
component–oriented which cannot be applied to the different types 
of component. Experience–based prognostic approach is based on 
the use of the probabilistic and stochastic models of life cycle of the 
equipment. The breakdown information or any related life time data 
and knowledge from experience during the whole operation period 
of the equipment are accumulated to form the certain probabilistic 
function or models (Medjaher & Zerhouni, 2009). Theoretically, this 
approach is well-presented but in the real implementation, the lifetime 
data are very difficult to acquire especially on equipment with high 
reliability which its failure may not occur during the analysis period 
or only one unit failed before failure.  In addition, none of industry 
will allow its machines or equipment to undergo a breakdown for the 
purpose of modelling (Xiaoyan & Ping, 2003).  Data-driven prognostic 
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approach utilizes historical data to automatically learn a model of 
system behavior and predict the future condition of degradation values 
(Schwabacher, 2005). Therefore, the critical challenge in data-driven 
prognostic approach is continuing to provide a model that is able to 
generate high validity predicted data for RUL estimation based on all 
the information acquired. This research aims to propose a data–driven 
prognostic model that can generate the series of future data with higher 
accuracy prediction performance.

3.0 the ProPoseD Prognostic MoDel 

The proposed prognostic model is based on using existing condition 
operating data from equipment to predict the equipment life time 
as shown in Figure 1. This model consists of three main modules 
sequentially: data acquisition, performance degradation assessment, 
and prognostic model generation. The functionalities of the modules 
are briefly discussed below.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The proposed prognostic model 
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3.1  Data Acquisition 

Data Acquisition is a process of collecting and storing useful data from 
targeted physical equipment for the purpose of prediction in prognostic 
(Jardine, et al., 2006). This process is an essential step in the Condition-
based Predictive Maintenance (CBPM). Usually, there are two types of 
data that can be used: event data and condition monitoring data. Event 
data focuses on the information about when and how failures occur 
and what kind of the maintenance action can be taken to the observed 
equipment. On the other hand, condition monitoring data is more 
flexible which can be attributed from signal characteristics or control 
process of equipment (Jardine, et al., 2006). For instance, vibration 
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signature, oil analysis and output rate  have been successfully used 
for monitoring the presence of failure in equipment (Lee, Ni et al., 
2006; Wang & Hussin, 2008). Other alternative condition parameters 
that can be used in prognostic are acoustic data, temperature, pressure, 
moisture, humidity, weather or environment data (Jardine, et al., 2006). 
These observed conditions are subjected as data input of the prognosis 
process.  

3.2 Performance Degradation Assessment 

Performance degradation assessment has been a necessity in 
development of prognostic as supported by previous studies, for 
example in Yan et al (2004) & Caesarendra et al (2010). Because of the 
proposed prognostic model involves  the prediction task that contains 
uncertainty behaviour, thus, it can be more realistic to use a degree 
of degradation probability for the estimated RUL value (Medjaher & 
Zerhouni, 2009; Caesarendra et al., 2010).  By monitoring the trend 
of equipment degradation and assessing performance, it allows 
the degradation behaviour to be analysed and used to understand 
the failure information.  In this paper, the performance degradation 
assessment is modelled to characterize the identified condition 
monitoring and process data in data acquisition module to generate 
degradation index (DI). DI is used as the prognostic parameter in the 
proposed model. Furthermore, DI would be the key parameter if the 
failure of equipment is based on the multiple conditions monitoring 
data.

The transformation of condition monitoring data to the series of 
degradation index can be accomplished by using a statistical technique 
namely Logistic Regression (LR). LR is a variation regression method 
that finds the best fitting model to describe the relationship between 
dependent dichotomous variable  and one or multiple independent 
variables (Caesarendra et al., 2010). Result of LR which contains the 
probabilities ranges between 0 and 1 can be used to represent as 
the series of degradation index (Yan, Koc et al., 2004). A number of 
researches have investigated the adaptability of LR in engineering 
especially to assess equipment failure (Yan, Koc et al., 2004; Lee, Ni et 
al., 2006; Caesarendra et al., 2010). Here, the failure probabilities can be 
calculated through the function as follows:
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where g(x) is a linear combination of independent variables, α is the intercept when x=0 and βs 
are known as the regression coefficients, which can be estimated using a mathematical technique 
called Maximum Likelihood Estimation. The resulted failure probabilities from the degradation 
model are subsequently used as the input for developing the prognostic model. 
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The process of prognostic is accomplished by predicting and extrapolating the dynamic DIs over 
time from the performance degradation model. A traditional prediction method, which is 
Autoregressive Moving Average (ARMA) is the most method  widely used in time series 
modelling. However, ARMA models are linear based prediction model and required stationary as 
the important condition in the time series for conducting prediction process. Because of the 
stationary assumption, the observation data will be simulated and fitted over and over again 
within a restricted set of ARMA model parameters. Due to that, these models are only accurate 
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Maximum Likelihood Estimation. The resulted failure probabilities 
from the degradation model are subsequently used as the input for 
developing the prognostic model.

3.3  Prognostic Model generation 

The process of prognostic is accomplished by predicting and 
extrapolating the dynamic DIs over time from the performance 
degradation model. A traditional prediction method, which is 
Autoregressive Moving Average (ARMA) is the most method  widely 
used in time series modelling. However, ARMA models are linear 
based prediction model and required stationary as the important 
condition in the time series for conducting prediction process. Because 
of the stationary assumption, the observation data will be simulated 
and fitted over and over again within a restricted set of ARMA model 
parameters. Due to that, these models are only accurate for stationary 
time series prediction and the robustness of the selected model for a 
trend and dynamic variance of the degradation process may not appear 
defensible.
  
Exponential smoothing technique is a one of successful time series 
prediction technique that having the property of prediction intervals 
which is based on the weighted combination of past observation data 
(Hyndman, 2008). This technique had been extended for handling the 
time series with trend and known as double exponential smoothing 
(DES). In detail, exponential smoothing model uses the weighted 
parameter based on the retention of the observation data. This 
weighted parameter is known commonly as alpha in which its value is 
between 0 and 1. The value alpha in the exponential smoothing model 
can be responsive quickly to changes in the data pattern and can be 
accomplished in limited observation data. Because of that, the DES 
method offers more robust and accurate prediction result comparing 
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other time series prediction model. Thus, DES is continuously used in 
this research to predict the series of future DIs.

However, DES extrapolate from pre-assumed linear form of model, 
it may not offer good prediction results for a highly dynamic 
process, when the features extracted from sensor readings display 
highly irregular behaviour. Therefore, a nonlinear technique is also 
considered in this research to investigate the performance accuracy in 
prediction. Artificial Neural Network (ANN) is one of the non-linear 
information processing techniques that digitized based on biologically 
inspired computer programs to simulate the way in which the human 
brain process information (Agatonovic-Kustrin & Beresford, 2000).  
By using the concept of learning through experience, ANN gathers 
the information and then detects the patterns and relationship in the 
data. An ANN architecture constitutes as a computational model that 
contains hundreds of artificial neurons and connected with coefficients 
known as weights (Agatonovic-Kustrin & Beresford, 2000) as illustrated 
in Figure 2.  In this study, ANN also is used for predicting the series of  
the future DIs 
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Figure 2. A  Neural Network Architecture

However, in order to use an ANN model, two other key parameters 
need to be considered, namely the number of hidden layer and the 
number of neurons. A single hidden layer is sufficient to compute a 
uniform approximation of any continuous function, according to Sun 
et al., (2010). Therefore, the proposed ANN is composed of an input 
layer, a hidden layer and an output layer with one output neuron. The 
logistic function is used as the activation function in the hidden layer 
and the linear function is used in output layer. 

In applying neural network, deciding the number input and hidden 
neuron has always been an issue. Having a smaller number of hidden 
neurons tend to leads the performance is not adequate, while having 
too many neurons may increase the risk of over-fitting of the data and 
impede generalization. Ultimately, the selection of the architecture of 
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a neural network comes down to trial and error (Heaton, 2008). In this 
paper, the early stopping method is used in the trial and error procedure 
to determine the number of input neuron and hidden neuron. Here, 
the training data is trained iteratively with increase in the number of 
input and output. The iteration process is stopped when the training 
result is higher than it was last trained. This training result is based on 
statistical analysis namely root mean square error (RMSE). RMSE can 
be calculated as follows: 
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The process of an autoclave basically removes the air from inside the 
chamber, creates an increased temperature through the use of heating 
elements, and creates an increased pressure inside the chamber at 
the same time as shown in Figure 3.  Fuel oil is used to generate heat 
and energy for the heating system in the autoclave. Therefore the 
temperature of fuel oil needs to be consistent during the autoclave 
curing process.  One of the major failures of the burner is excessive 
heating of oil due to the clogging of carbon black in the burner strainer. 
Thus, the proposed prognosis model is to predict RUL by trending 
series of degrdation index of the autoclave burner.  

Extensive investigations have been made in order to identify condition 
monitoring parameters that are well related with burner failure. Based 
on the recommendation from the industry’s maintenance experts, 
maximum temperature (max_temp) is utilized as a condition monitoring 
parameter to monitor condition of autoclave’s burner air temperature 
parameter called AIRTC.   From the condition normal and faulty 
autoclave’s burner, performance degradation model is generated using 
logistic regression method as in Equation (1) and (2) and the series of 
degrdation index is estimated from the model.  Figure 4 illustrates the 
series of degradation index of the autoclave burner based on a single 
condition max_temp.
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Figure 4. The generated degradation index

For extrapolating the estimated RUL values, the available condition 
data were used to train the prognostic and the rest of DI point were 
employed for validation model. Figure 5 and Figure 6 shows the 
extrapolation process from ANN and double exponential smoothing 
respectively.
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In order to show the efficiency of the predictive ability, the ANN model is examined and 
compared with Double exponential model. The performance comparison results are presented in 
Table 1. 
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In order to show the efficiency of the predictive ability, the ANN 
model is examined and compared with Double exponential model. The 
performance comparison results are presented in Table 1.

Table 1. Performance Comparison

 

Table 1. Performance Comparison 

 9 15 21 

 3 -day 5-day 7-day 

Model Training Validation Training Validation Training Validation 

ANN 0.05925 0.03292 0.05435 0.04212 0.05750 0.03226 

DE 0.08059 0.03029 0.08138 0.06414 0.08233 0.03669 

 

As shown in Table 1, according to RMSE measurement, it indicates that ANN model offers a 
minimum error variance and adequate for failure prediction for more series of estimated RUL 
values based on degradation index. By having more estimated values in advance, the 
maintenance engineers would have sufficient time to adjust their production line flow and 
prepare the maintenance necessary actions. 

5.0 CONCLUSION 

A data-driven prognostic model for predicting future condition equipment has been described 
and applied through an industrial case study. The proposed methods are based on the time-series 
prediction techniques to extrapolate the remaining useful life data. In this paper, the prognostic 
model has been accomplished by using Double Exponential Smoothing and Artificial Neural 
Network methods.  The prediction performance of both methods is also compared and evaluated. 
With the RUL,  the maintenance people are able to construct the maintenance plan efficiently. 
Finally, the maintenance cost policy would be required to perform the optimal maintenance 
decision. Thus, one critical direction for the future research relates to the integration of 
prognostic model with maintenance cost for practical decision making.  
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maintenance engineers would have sufficient time to adjust their 
production line flow and prepare the maintenance necessary actions.

5.0 conclusion

A data-driven prognostic model for predicting future condition 
equipment has been described and applied through an industrial case 
study. The proposed methods are based on the time-series prediction 
techniques to extrapolate the remaining useful life data. In this 
paper, the prognostic model has been accomplished by using Double 
Exponential Smoothing and Artificial Neural Network methods.  
The prediction performance of both methods is also compared and 
evaluated. With the RUL,  the maintenance people are able to construct 
the maintenance plan efficiently. Finally, the maintenance cost policy 
would be required to perform the optimal maintenance decision. Thus, 
one critical direction for the future research relates to the integration of 
prognostic model with maintenance cost for practical decision making. 
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