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ABSTRACT

The IEC 61967 standards suggest an integrated circuits (ICs) 
electromagnetic emission measurement technique by mounting IC test 
board on TEM/GTEM cell wall. It appears that the method has limited 
device under test (DUT) rotation in horizontal position and neglected 
vertical polarization while rotating in horizontal position. In general, the 
electromagnetic emission of a device at an observation point is contributed 
by both the horizontal and vertical polarizations. The limitation can be 
overcome by conducting the emission test in Gigahertz Transverse 
Electromagnetic Mode (GTEM). However, supporting components on the 
board and interface cable are the major concerns which may contribute 
unwanted noise to interfere with the measurement. In this paper, we 
present an effort to tackle these crucial matters in the setup in order to 
quantify IC electromagnetic emission in GTEM cell with application of 
basic electromagnetic compatibility (EMC) measurement approaches such 
as shielding, grounding and suppression using ferromagnetic material. The 
results show strong evidence on the effectiveness of the technique proposed 
to ensure reliable IC emission measurement in GTEM cell.
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1.0 INTRODUCTION

In the trend towards faster clock speed and higher integration 
densities, ICs have become significant noise sources that cause 
electromagnetic emission. Thus, the demands on electromagnetic 
emission characterization of ICs are growing. The exploration of 
the IC electromagnetic behavior provides important information 
for component selection and design concerns in an early product 
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development. Consequently, shorter time is needed in the process to 
develop any electronic system.

Diverse effort in previous studies have introduced TEM/GTEM cell 
measurement method (Standard EMC 61967-2, 2005) and near field 
measurement technique (Deutschmann, 2005) and (Weng, 2011) to 
evaluate electromagnetic emission of ICs. The near field technique 
is an attractive approach that has an advantage to characterize IC 
electromagnetic emission in close vicinity. The method assumed that 
the measured emission is contributed by the IC itself if an infinite 
perfect ground plane is established around the IC test board. This is to 
ensure that IC is the only radiator and at the same time the reliability 
of the measurement is attained. However, ambient electromagnetic 
disturbance may be considered as a major interference in the near field 
method. To prevent error due to the ambient noise, the near field system 
generally has to be setup in shielded room, which is often considered 
too expensive and not affordable by most of EMC test laboratories. 

TEM/GTEM cell is an enclosed metallic structure which provides a well 
isolation between inner and outer environments of the cell. As the cell 
is properly closed, its inner side would neither contribute to nor suffer 
from any external interference. The cell cost is also relatively cheaper 
than building a shielding room. Another weakness of the near field 
method is that the sensitivity of the field probe must compromise with 
spatial resolution and dynamic range. A narrow band probe is merely 
suitable for testing in a specific frequency range, therefore various 
set of probes are needed for the emission test in different frequency 
ranges. In contrast, TEM/GTEM cell has a septum which behaves as 
receiving antenna over a wide band frequency. In addition, a GTEM 
cell can operate over wider range of frequencies than TEM cell.

In this paper, the focus is given on the measurement technique to 
characterize radiated electromagnetic emission of a field programmable 
gate array (FPGA) chip in a GTEM cell. The chip was configured with 
toggle flip-flop (TFF) pattern and exercised at a 100 MHz clock signal. 
Several techniques are utilized in the setup to avoid interference 
of unwanted electromagnetic noise. The techniques employed are 
shielding the FPGA board in a metallic cavity, grounding the cavity 
with low impedance ground strap and suppressing common mode 
current emission of interface cable using ferrite beads. The results 
presented in the study provide useful alternative to IC emission test 
methods based on IEC 61967.
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2.0 CHARACTERIZATION OF GTEM CELL

Prior to perform any electromagnetic emission measurement of the 
ICs, the performance of the GTEM cell is important to be checked and 
validated. This can ensure the measured data achieve a reasonable 
level of accuracy. 

GTEM cell is considered as a rectangular transmission line which 
operates in TEM mode. The cell characteristic impedance Z0 along the 
septum length is expected to be 50±2 Ω. This parameter must be checked 
because impedance mismatching can lead to multiple reflections and 
eventually affect the reliability and accuracy of the collected data. 
When a network analyzer is connected to the cell port, it is possible to 
evaluate the overall cell input impedance against frequency range of 
interest. Figure 1(a) shows the input impedance over a frequency range 
from 30 MHz up to 1 GHz. It is seen that the input impedance varies 
about 50 Ω over the frequency range. 

The reflection properties at the GTEM cell is characterized by measuring 
return loss of the cell when it is empty. As can be seen in Figure 1(b), the 
return loss is well below 20 dB over the frequency spectrum. According 
to the standard IEC 61967-2, the return loss ought to be below 14 dB 
which is also equivalent to a VSWR value of 1.5.

 

(a) (b) 
Figure 1. Parameters of GTEM cell, (a) cell impedance vs frequency,  

and (b) cell return loss 
 

Basically, a GTEM cell comprises of a tapered section with a single port, 50 ohm characteristic 
impedance and a broadband termination. A spectrum analyzer is utilized to measure the output 
voltage due to electromagnetic emission of any device under test (DUT) in the cell as shown in 
Figure 2(a). The equivalent circuit is shown in Figure 2(b).  
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and incident voltages (Ulaby, 2010). Assuming the GTEM cell as lossless transmission line, the 
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Figure 1. Parameters of GTEM cell, (a) cell impedance vs frequency, 
and (b) cell return loss

Basically, a GTEM cell comprises of a tapered section with a single 
port, 50 Ω characteristic impedance and a broadband termination. A 
spectrum analyzer is utilized to measure the output voltage due to 
electromagnetic emission of any device under test (DUT) in the cell as 
shown in Figure 2(a). The equivalent circuit is shown in Figure 2(b). 
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Figure 2. (a) GTEM emission measurement setup, (b) Equivalent circuit

Voltage reflection coefficient Γ at a load is defined as the ratio of 
the amplitude of the reflected and incident voltages (Ulaby, 2010). 
Assuming the GTEM cell as lossless transmission line, the voltage 
reflection coefficient can be obtained as
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where V0
+ is an incident wave travelling towards the load, V0

- represents 
the reflected wave travelling towards the source, ZL is load impedance, 
Z0 is characteristic impedance, and zL  is normalized load impedance 
ZL⁄Z0 . The resultant voltage |Ṽ(z)| at the load is given by
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3.0 TEST DEVICE PREPARATION

The DUT chosen for the emission test is a FPGA chip which is mounted 
on a printed circuit board (PCB) with a ground plane. All necessary 
components, other than the chip, are soldered on the opposite side of 
the PCB. 

It is challenging to characterize electromagnetic emission of an IC inside 
the GTEM cell. This is because all supporting components and interface 
cables on the PCB may generate unwanted energy that would also be 
measured unintentionally. Consequently, the measured emission is 
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a combination field contributed by both the IC and the disturbances. 
However, it is believed that the interference can be minimized if 
precautions are taken into account during the measurement setup. 

Shielding is a simple and effective technique that has widely been 
used to isolate an environment from electromagnetic interference. So 
the PCB is firstly housed inside a metallic cavity with the IC exposed 
via an opening window. Since the metallic cavity is a perfect shield, it 
can isolate the unwanted energy inside the cavity from being emitted. 
This ensures the FPGA chip is the only source to contribute towards 
electromagnetic emission in the measurement. 

In general, the performance of a metallic shield depends on its 
conductivity, permeability, thickness and operating frequency. 
According to Paul (2006), if the shield thickness is greater than the skin 
depth of the material at the frequency of incident field, the shielding 
effectiveness is dominated by absorption loss. The skin depth, δ of a 
material is given by 
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 is phase velocity of the uniform plane wave in the lossless dielectric medium (=0, , 

) filling the cavity, m, n and p correspond to the number of half-wave variations of the field in 
respective x-, y- and z-direction. The lowest resonant frequency of the cavity is approximated 1.7 
GHz and it is greater than the highest frequency of interest. Thus, as long as the operating 
frequency and its harmonics stay below this resonance frequency, the cavity will sustain a free 
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4.1 Ambient Noise

It is important to perform ambient noise measurement inside the GTEM cell to ensure that there 
are no external electromagnetic leakages due to imperfect shielding of the cell. When the IC is 
not powered, the spectrum analyzer should only measure voltages due to noise floor of the cell 
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should be identified and eliminated.  
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the IC is energized, the electromagnetic fields emitted will coupled to the cell septum. However 
part of the electromagnetic field will also be coupled to the cavity resulting in induction current 
which will produce secondary emission.  

In this case, proper grounding is extremely important for diverting the induced current away 
from the cavity. The inner side of the cavity is grounded to PCB using gasket and the outer side 
is tied to GTEM cell body using ground strap. The ground strap has to be chosen to provide low 
impedance between connecting points to aviod unwanted potential difference. Figure 3(a) shows 
the wire, ribbon cable and copper tape that are used for grounding purposes. Figure 3(b) is the 
setup inside the GTEM cell with attachment of copper tape between the cavity and GTEM cell 
ground plane clearly shown. 
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Figure 3. Minimizing enclosure effect with different types of ground straps, 

(a) selected ground strap, (b) setup of the measurement 
 

Figure 4(a) presents the ambient noise inside the GTEM cell when the FPGA chip is not 
powered. It can be observed that leakages from external sources manage to enter the GTEM cell 

Copper 
tape 

 is phase velocity of the uniform plane wave in the lossless 



ISSN: 2180-3811        Vol. 4     No. 2    July - December 2013

Journal of Engineering and Technology 

162

dielectric medium 

 

where 


 is phase velocity of the uniform plane wave in the lossless dielectric medium (=0, , 

) filling the cavity, m, n and p correspond to the number of half-wave variations of the field in 
respective x-, y- and z-direction. The lowest resonant frequency of the cavity is approximated 1.7 
GHz and it is greater than the highest frequency of interest. Thus, as long as the operating 
frequency and its harmonics stay below this resonance frequency, the cavity will sustain a free 
oscillation.  
 
 
4.0 MEASUREMENTS AND PRECAUTIONS 
 
4.1 Ambient Noise

It is important to perform ambient noise measurement inside the GTEM cell to ensure that there 
are no external electromagnetic leakages due to imperfect shielding of the cell. When the IC is 
not powered, the spectrum analyzer should only measure voltages due to noise floor of the cell 
and measuring equipment. Occurrence of voltage peak over the desired frequency spectrum 
should be identified and eliminated.  
 
As mentioned previously, the cavity may be a good radiator if it is not properly grounded. When 
the IC is energized, the electromagnetic fields emitted will coupled to the cell septum. However 
part of the electromagnetic field will also be coupled to the cavity resulting in induction current 
which will produce secondary emission.  

In this case, proper grounding is extremely important for diverting the induced current away 
from the cavity. The inner side of the cavity is grounded to PCB using gasket and the outer side 
is tied to GTEM cell body using ground strap. The ground strap has to be chosen to provide low 
impedance between connecting points to aviod unwanted potential difference. Figure 3(a) shows 
the wire, ribbon cable and copper tape that are used for grounding purposes. Figure 3(b) is the 
setup inside the GTEM cell with attachment of copper tape between the cavity and GTEM cell 
ground plane clearly shown. 

 

(a) (b) 
Figure 3. Minimizing enclosure effect with different types of ground straps, 

(a) selected ground strap, (b) setup of the measurement 
 

Figure 4(a) presents the ambient noise inside the GTEM cell when the FPGA chip is not 
powered. It can be observed that leakages from external sources manage to enter the GTEM cell 

Copper 
tape 

 

 

where 


 is phase velocity of the uniform plane wave in the lossless dielectric medium (=0, , 

) filling the cavity, m, n and p correspond to the number of half-wave variations of the field in 
respective x-, y- and z-direction. The lowest resonant frequency of the cavity is approximated 1.7 
GHz and it is greater than the highest frequency of interest. Thus, as long as the operating 
frequency and its harmonics stay below this resonance frequency, the cavity will sustain a free 
oscillation.  
 
 
4.0 MEASUREMENTS AND PRECAUTIONS 
 
4.1 Ambient Noise

It is important to perform ambient noise measurement inside the GTEM cell to ensure that there 
are no external electromagnetic leakages due to imperfect shielding of the cell. When the IC is 
not powered, the spectrum analyzer should only measure voltages due to noise floor of the cell 
and measuring equipment. Occurrence of voltage peak over the desired frequency spectrum 
should be identified and eliminated.  
 
As mentioned previously, the cavity may be a good radiator if it is not properly grounded. When 
the IC is energized, the electromagnetic fields emitted will coupled to the cell septum. However 
part of the electromagnetic field will also be coupled to the cavity resulting in induction current 
which will produce secondary emission.  

In this case, proper grounding is extremely important for diverting the induced current away 
from the cavity. The inner side of the cavity is grounded to PCB using gasket and the outer side 
is tied to GTEM cell body using ground strap. The ground strap has to be chosen to provide low 
impedance between connecting points to aviod unwanted potential difference. Figure 3(a) shows 
the wire, ribbon cable and copper tape that are used for grounding purposes. Figure 3(b) is the 
setup inside the GTEM cell with attachment of copper tape between the cavity and GTEM cell 
ground plane clearly shown. 

 

(a) (b) 
Figure 3. Minimizing enclosure effect with different types of ground straps, 

(a) selected ground strap, (b) setup of the measurement 
 

Figure 4(a) presents the ambient noise inside the GTEM cell when the FPGA chip is not 
powered. It can be observed that leakages from external sources manage to enter the GTEM cell 

Copper 
tape 

filling the cavity, m, n and p correspond to 
the number of half-wave variations of the field in respective x-, y- and 
z-direction. The lowest resonant frequency of the cavity is approximated 
1.7 GHz and it is greater than the highest frequency of interest. Thus, 
as long as the operating frequency and its harmonics stay below this 
resonance frequency, the cavity will sustain a free oscillation. 
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not properly grounded. When the IC is energized, the electromagnetic 
fields emitted will coupled to the cell septum. However part of the 
electromagnetic field will also be coupled to the cavity resulting in 
induction current which will produce secondary emission. 

In this case, proper grounding is extremely important for diverting the 
induced current away from the cavity. The inner side of the cavity is 
grounded to PCB using gasket and the outer side is tied to GTEM cell 
body using ground strap. The ground strap has to be chosen to provide 
low impedance between connecting points to aviod unwanted potential 
difference. Figure 3(a) shows the wire, ribbon cable and copper tape 
that are used for grounding purposes. Figure 3(b) is the setup inside 
the GTEM cell with attachment of copper tape between the cavity and 
GTEM cell ground plane clearly shown.
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Figure 3. Minimizing enclosure effect with different types of ground 
straps, (a) selected ground strap, (b) setup of the measurement

Figure 4(a) presents the ambient noise inside the GTEM cell when the 
FPGA chip is not powered. It can be observed that leakages from external 
sources manage to enter the GTEM cell via the power and signal cables. 
These leakages must be removed to ensure correct measurement of 
electromagnetic emission due to FPGA chip. Various techniques were 
employed to remove the leakages and it was found that usage of copper 
tape located near all interconnection points (Figure 5) are effective in 
removing some of them. In addition ferrite beads connected to the 
cable could further improve the cleanliness of the noise floor. Figure 
4(b) shows the new noise floor after implementing the techniques to 
reduce external leakages.
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Figure 5. Placement of copper straps in different grounding locations 

 

4.2 Double shielded cables 

The previous result still shows the existence of electromagnetic leakage at about 900MHz even 
after efforts had been taken to eliminate it with shielding, grounding and suppression using 
ferrite. Since these peaks appear across GSM mobile phone frequencies, it is suspected that these 
peaks originate from nearby base station. The cable connecting the GTEM cell to spectrum 
analyzer is able to pick up GSM signal. The condition can be improved using double shielded 
cable as shown in Figure 6. 
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4.2 Double Shielded Cables

The previous result still shows the existence of electromagnetic leakage 
at about 900 MHz even after efforts had been taken to eliminate it with 
shielding, grounding and suppression using ferrite. Since these peaks 
appear across GSM mobile phone frequencies, it is suspected that these 
peaks originate from nearby base station. The cable connecting the 
GTEM cell to spectrum analyzer is able to pick up GSM signal. The 
condition can be improved using double shielded cable as shown in 
Figure 6.

 

 
Figure 6. Removing GSM signal using double shielded cable 

 

4.3 Electromagnetic emission measurement 

After obtaining a clean noise floor, the FPGA chip was configured with a toggle flip-flop (TFF) 
logic circuit and exercised with an external sinusoidal clock signal. The clock frequency is 100 
MHz and the output signal of the TFF pattern is 50 Mhz. Figure 7 shows the radiated emission is 
decomposition of fundamental clock frequency plus fundamental and harmonics of the output 
signal. The data can now be used for further applications because the effects of unwanted 
ambient noise have been eliminated using the techniques described earlier in this paper. 
 

 
Figure 7. Measured radiated emission of the FPGA chip 

 
 
5.0 CONCLUSION 
 
In this paper, we have suggested techniques to eliminate electromagnetic noise from interfering 
the measurement of electromagnetic emission due to ICs in a GTEM cell. The combined usage 
of grounding near interconnection points using low impedance ground strap, shielding the IC test 
board using metallic cavity, and cable shielding using ferrite beads successfully removed the 
unwanted noise in the emission measurement. This work provides a preliminary input in an 
effort to perform IC emission measurement inside a GTEM cell as opposed to mounting it on the 
GTEM wall based on IEC 61967. 
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4.3 Electromagnetic Emission Measurement

After obtaining a clean noise floor, the FPGA chip was configured with 
a toggle flip-flop (TFF) logic circuit and exercised with an external 
sinusoidal clock signal. The clock frequency is 100 MHz and the 
output signal of the TFF pattern is 50 Mhz. Figure 7 shows the radiated 
emission is decomposition of fundamental clock frequency plus 
fundamental and harmonics of the output signal. The data can now be 
used for further applications because the effects of unwanted ambient 
noise have been eliminated using the techniques described earlier in 
this paper.
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5.0 CONCLUSION

In this paper, we have suggested techniques to eliminate electromagnetic 
noise from interfering the measurement of electromagnetic emission 
due to ICs in a GTEM cell. The combined usage of grounding near 
interconnection points using low impedance ground strap, shielding 
the IC test board using metallic cavity, and cable shielding using 
ferrite beads successfully removed the unwanted noise in the emission 
measurement. This work provides a preliminary input in an effort to 
perform IC emission measurement inside a GTEM cell as opposed to 
mounting it on the GTEM wall based on IEC 61967.
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