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ABSTRACT

The aim of this work is to simulate the elastoplastic behavior in large displacements of a 
beam of non-uniform section subjected to flexion. First, a mathematical formulation of the 
elastoplastic behavior based on the moment-curvature relation in the framework of the classical 
beam theory is developed where the non-uniformity of the section is taken into consideration. 
The curvature is then evaluated numerically by means of the Newton-Raphson method. Then 
a formulation in large displacements is put in place. The geometric nonlinearity governed 
by differential equations is analyzed. The integration method of Euler is favored to solve the 
problem and thus determine the deflection of the beam. The results of the elasticity simulation 
are compared with other results of the literature and a good coherence was found in the light 
of which the approach was applied in elastoplasticity.
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1.0 INTRODUCTION

The elastoplastic analysis of beams in large displacements has been the subject 
of intense research in recent years because of its great importance in different 
engineering applications (Hong, 2000; Pandit & Srinivasa, 2016) including 
civil engineering and particularly in the estimation of performances structures 
in the context of seismic risk (He & Zhong, 2012), mechanical engineering, 
biomechanics and aeronautics (Al-Sadder & Al-Rawi, 2006). It is therefore 
justified to take an interest in the problem with the aim of proposing approaches 
able to predict the behavior of these beams in the face of mechanical stresses.

In elasticity, the behavior is often translated by a linearity relation between 
the stresses and the strains. However, plastic behavior is generally considered 
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non-linear: it is a so-called material non-linearity. In bending, the curvature 
moment relation is well placed to represent the mechanical behavior (Fard, 
Chattopadhyay & Liu, 2012; Kwak & Kim, 2002; Royer-Carfagni, 2001). In turn, 
this relationship is linear in elasticity but nonlinear in plasticity. Moreover, if we 
consider that the displacements and the rotations are large, another geometric 
non-linearity intervenes. Thus, the problem becomes complicated and often 
requires the use of numerical methods for its resolution. Reference is made to 
the reference (Dado & Al-Sadder, 2005) for a brief history of the methods used 
to solve the problem of the bending of cantilever in large displacements. There 
are four main approaches, the first of which is based on elliptic integration, the 
second uses numerical integration, the third uses the finite element method in 
coupling with the Newton-Raphson method, and the fourth uses the method of 
the finite differences in coupling with the Newton-Raphson method.

Euler-Bernoulli's theory of flexion, which applies not only to model elastic 
behavior but also to describe the inelastic behavior of beams (Bazant & 
Cedolin, 2003), makes it possible to establish a relation between the flexural 
curvature and the transverse displacement of the beam. The curvature is in 
turn connected with the bending moment by a function which may be linear or 
nonlinear. In linear elasticity, different methods have been applied to evaluate 
the deflection in large displacements. Reference is made to the references (Ang, 
Wang & Low 1993; Beléndez, Neipp & Beléndez 2002; Dado & Al-Sadder, 2005; 
Al-Sadder & Al-Rawi, 2006; Wang, Chen & Liao, 2008; Chen, 2010; Mutyalarao, 
Bharathi & Rao, 2010; Shvartsman, 2013) which have taken into account 
various aspects including load types and very varied geometries. In the past 
literature, (Lewis & Monasa, 1981; Lewis & Monasa, 1982; Lee, 2002), the focus 
was on solving the problem of bending in large displacements of nonlinear 
elastic beams subjected to a concentrated load. In another plane, the article by 
Baykara, Guven and Bayer (2005) focused on the flexion in large displacements 
of bimodular nonlinear elastic materials. The tension behavior in this case is 
different from that in compression, while an analytical solution to the problem 
was successfully established. In the context of plastic behavior,  the work by 
Fried1 (1985), He and Zhong (2012), Xi, Liu and Li (2012) as well as Pandit and 
Srinivasan (2016) have proposed approaches in large displacements concerning 
the elastic perfectly plastic and elastoplastic behavior with hardening.
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Hence, based on the work reported in the literature, in this study, the focus is in 
the modeling and simulation in large displacements of a beam of elastoplastic 
behavior with linear hardening. The mechanical behavior is therefore assumed 
to be bilinear. Material and geometric nonlinearities are then taken into account. 
In addition, beams with non-uniform cross-sections are considered.

2.0 MATHEMATICAL FORMULATION

2.1 Constitutive law

The beam in question is considered to have elastoplastic behavior with linear 
hardening. Below a stress threshold (elastic limit), the response of the material 
is of linear elastic nature. Once this threshold is exceeded, the response is 
elastoplastic with linear hardening as illustrated in Figure 1. The constitutive 
law is given by an expression in Equation (1):
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2.0 MATHEMATICAL FORMULATION 

 
2.1       Constitutive law 

 
The beam in question is considered to have elastoplastic behavior with linear hardening. 
Below a stress threshold (elastic limit), the response of the material is of linear elastic 
nature. Once this threshold is exceeded, the response is elastoplastic with linear hardening 
as illustrated in Figure 1. The constitutive law is given by an expression in Equation (1): 
 

�
 𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                             𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒                          𝜎𝜎𝜎𝜎 ≤ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 
𝜎𝜎𝜎𝜎 = 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 + 𝐻𝐻𝐻𝐻 �𝐸𝐸𝐸𝐸 − 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒

𝐸𝐸𝐸𝐸
�     𝐸𝐸𝐸𝐸 = �𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒 + 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝�            𝜎𝜎𝜎𝜎 > 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒

                                          (1) 

 

Where 𝜎𝜎𝜎𝜎  and 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒  denote respectively the stress and the elastic limit. 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒, 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝  and 𝐸𝐸𝐸𝐸  are 
respectively the elastic, plastic and total strains. 𝐸𝐸𝐸𝐸  and 𝐻𝐻𝐻𝐻  represent respectively the 
Young's modulus and tangent modulus. 

                                               (1)

Where σ and σe denote respectively the stress and the elastic limit. εe, ε_p 
and ε are respectively the elastic, plastic and total strains. E and H represent 
respectively the Young's modulus and tangent modulus.
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Figure 1. Elastoplastic behavior 

 
2.2       Analysis of elastoplastic bending 
 
Considering a straight cantilever beam of length 𝐿𝐿𝐿𝐿 and rectangular section (𝑏𝑏𝑏𝑏 × 2ℎ) fixed 
at one end and subjected to a concentrated load 𝑃𝑃𝑃𝑃 of the other free end as shown in Figure. 
2. The applied force generates a zero bending moment at the free end and increases as it 
moves towards the recess where it takes its maximum value. Since the stress produced is 
non-uniform in the direction of the length of the beam, two behavioral domains are 
distinguished: an elastic domain concerning the sections of the beam where the stress is 
below the elastic limit; and an elastoplastic domain in the sections where this limit is 
exceeded. The elastic boundary coincides with the coordinate corresponding to the 
plastification of the first fiber of the beam. It is therefore time to define a critical moment 
value 𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒  capable of generating an elastoplastic deformation. By designating 𝐼𝐼𝐼𝐼  the 
quadratic moment of inertia of the section, the threshold moment is given by an 
expression in Equation (2) as follow: 
 
𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 = 𝐼𝐼𝐼𝐼𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒

ℎ
                        (2) 

 

 
Figure 2. Boundary elastic / elastoplastic 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒  

𝜎𝜎𝜎𝜎 

𝐸𝐸𝐸𝐸 

𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝  𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒  

𝐸𝐸𝐸𝐸 

𝐻𝐻𝐻𝐻 

 

z 

 

𝑀𝑀𝑀𝑀 > 𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒                 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒         𝑀𝑀𝑀𝑀 < 𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 

Elastoplastic Elastic 

2𝑧𝑧𝑧𝑧
𝑒𝑒𝑒𝑒 

2ℎ
 

2𝑧𝑧𝑧𝑧
𝑒𝑒𝑒𝑒 

𝜎𝜎𝜎𝜎 

x 

P 

Figure 1 Elastoplastic behavior

2.2 Analysis of elastoplastic bending

Considering a straight cantilever beam of length L and rectangular section 
(b × 2h) fixed at one end and subjected to a concentrated load P of the other 
free end as shown in Figure. 2. The applied force generates a zero bending 
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moment at the free end and increases as it moves towards the recess where 
it takes its maximum value. Since the stress produced is non-uniform in the 
direction of the length of the beam, two behavioral domains are distinguished: 
an elastic domain concerning the sections of the beam where the stress is below 
the elastic limit; and an elastoplastic domain in the sections where this limit is 
exceeded. The elastic boundary coincides with the coordinate corresponding 
to the plastification of the first fiber of the beam. It is therefore time to define 
a critical moment value Me capable of generating an elastoplastic deformation. 
By designating I the quadratic moment of inertia of the section, the threshold 
moment is given by an expression in Equation (2) as follow:
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Figure 2  Boundary elastic / elastoplastic

Figure 2 shows that the sections of the beam in the elastic domain are of 
perfectly elastic behavior while those of the elastoplastic domain are partially 
plasticized. Indeed, due to the non-uniformity of the stresses in the direction 
of the height of the beam, two zones of different behaviors are observed within 
the same section in the elastoplastic domain. The elastic boundary ze according 
to the height is obtained from the formula given in Equation (3) as follows:
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Figure 2 shows that the sections of the beam in the elastic domain are of perfectly elastic 
behavior while those of the elastoplastic domain are partially plasticized. Indeed, due to 
the non-uniformity of the stresses in the direction of the height of the beam, two zones of 
different behaviors are observed within the same section in the elastoplastic domain. The 
elastic boundary 𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒  according to the height is obtained from the formula given in 
Equation (3) as follows: 
 
𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 = ℎ𝜒𝜒𝜒𝜒𝑒𝑒𝑒𝑒

𝜒𝜒𝜒𝜒
               (3) 

 
Where 𝜒𝜒𝜒𝜒𝑒𝑒𝑒𝑒 represents the curvature generated by the threshold moment 𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒. 
 
2.2.1 Elastic field 
 
Elastic analysis concerns sections where the bending moment is below the plasticity 
threshold. The laws of linear elasticity in flexion are then applied. The bending curvature 
is easily determined from the equilibrium equation given in Equation (4) as follows:-  
 
𝜒𝜒𝜒𝜒 = 𝑀𝑀𝑀𝑀

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼
                (4) 

 
2.2.1 Elastoplastic field  
 
The elastoplastic analysis concerns all the sections of the elastoplastic domain. Two zones 
of different behaviors coexist within the same section. Thus, two different formulas of 
constraint govern these sections are as given in Equations (5) and (6) as follow: 
 

�
𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                                         𝑧𝑧𝑧𝑧 ≤ 𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 
𝜎𝜎𝜎𝜎 = 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 + 𝐻𝐻𝐻𝐻 �𝐸𝐸𝐸𝐸 − 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒

𝐸𝐸𝐸𝐸
�                𝑧𝑧𝑧𝑧 > 𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒            (5) 

 
The equilibrium of the sections is governed by the equation: 
 
𝑀𝑀𝑀𝑀 = 2𝑏𝑏𝑏𝑏 �∫ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒

0 𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 + ∫ �𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 + 𝐻𝐻𝐻𝐻 �𝐸𝐸𝐸𝐸 − 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒
𝐸𝐸𝐸𝐸
�� 𝑧𝑧𝑧𝑧𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧ℎ

𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒
�          (6) 

 
By integrating and replacing 𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 by its formula, the following expression in Equation (7) 
is attained: 
 

−�1
2

+ 𝐻𝐻𝐻𝐻
𝐸𝐸𝐸𝐸
� �𝜒𝜒𝜒𝜒𝑒𝑒𝑒𝑒

𝜒𝜒𝜒𝜒
�
2

+ �𝐻𝐻𝐻𝐻
𝐸𝐸𝐸𝐸
� 𝜒𝜒𝜒𝜒
𝜒𝜒𝜒𝜒𝑒𝑒𝑒𝑒

+ 3
2
�1− 𝐻𝐻𝐻𝐻

𝐸𝐸𝐸𝐸
� − 𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒
= 0          (7) 

 
Since the equation is nonlinear, a numerical scheme is needed to determine the bending 
curvature in the elastoplastic domain. It is chosen the iterative method of Newton-
Raphson. 
 
It should be mentioned that in the case of elastic perfectly plastic behavior, Equation (7) 
reduces to a simpler expression as given in Equation (8) and does not require any 
numerical analysis for its resolution. 
 

−�1
2
� �𝜒𝜒𝜒𝜒𝑒𝑒𝑒𝑒

𝜒𝜒𝜒𝜒
�
2

+ 3
2
− 𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒
= 0             (8) 

                                                                                                                           (3)

Where χe represents the curvature generated by the threshold moment Me.
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2.2.1	 Elastic	field

Elastic analysis concerns sections where the bending moment is below the 
plasticity threshold. The laws of linear elasticity in flexion are then applied. The 
bending curvature is easily determined from the equilibrium equation given in 
Equation (4) as follows:- 
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Since the equation is nonlinear, a numerical scheme is needed to determine the bending 
curvature in the elastoplastic domain. It is chosen the iterative method of Newton-
Raphson. 
 
It should be mentioned that in the case of elastic perfectly plastic behavior, Equation (7) 
reduces to a simpler expression as given in Equation (8) and does not require any 
numerical analysis for its resolution. 
 

−�1
2
� �𝜒𝜒𝜒𝜒𝑒𝑒𝑒𝑒

𝜒𝜒𝜒𝜒
�
2

+ 3
2
− 𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒
= 0             (8) 

                                                                                                                            (4)

2.2.1	 Elastoplastic	field	

The elastoplastic analysis concerns all the sections of the elastoplastic domain. 
Two zones of different behaviors coexist within the same section. Thus, two 
different formulas of constraint govern these sections are as given in Equations 
(5) and (6) as follow:
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The equilibrium of the sections is governed by the equation:
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Since the equation is nonlinear, a numerical scheme is needed to determine the bending 
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By integrating and replacing ze by its formula, the following expression in 
Equation (7) is attained:
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Since the equation is nonlinear, a numerical scheme is needed to determine the 
bending curvature in the elastoplastic domain. It is chosen the iterative method 
of Newton-Raphson.

It should be mentioned that in the case of elastic perfectly plastic behavior, 
Equation (7) reduces to a simpler expression as given in Equation (8) and does 
not require any numerical analysis for its resolution.
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The elastoplastic analysis concerns all the sections of the elastoplastic domain. Two zones 
of different behaviors coexist within the same section. Thus, two different formulas of 
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By integrating and replacing 𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 by its formula, the following expression in Equation (7) 
is attained: 
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�
2

+ �𝐻𝐻𝐻𝐻
𝐸𝐸𝐸𝐸
� 𝜒𝜒𝜒𝜒
𝜒𝜒𝜒𝜒𝑒𝑒𝑒𝑒

+ 3
2
�1− 𝐻𝐻𝐻𝐻

𝐸𝐸𝐸𝐸
� − 𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒
= 0          (7) 

 
Since the equation is nonlinear, a numerical scheme is needed to determine the bending 
curvature in the elastoplastic domain. It is chosen the iterative method of Newton-
Raphson. 
 
It should be mentioned that in the case of elastic perfectly plastic behavior, Equation (7) 
reduces to a simpler expression as given in Equation (8) and does not require any 
numerical analysis for its resolution. 
 

−�1
2
� �𝜒𝜒𝜒𝜒𝑒𝑒𝑒𝑒

𝜒𝜒𝜒𝜒
�
2

+ 3
2
− 𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒
= 0             (8)                                                                                                (8)

Figure 3 shows the moment curvature relationship in the case of elastic, 
elastic perfectly plastic and bilinear elastoplastic behaviors. It shows a 
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linear configuration corresponding to the elastic behavior while a nonlinear 
appearance reigns over the elastoplastic behavior, whether it is perfect or 
hardening.
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variable along the beam, the threshold moment also varies from one section to the other. 
In other words, the appearance of the plastic zones can take place at any section and not 
necessarily at the sections where the moment of flexion is greater. Thus, in order that the 
response of the beam is purely elastic in all the sections of the beam, the following 
condition must be satisfied, as given in Equation (9): 
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Considering a beam of circular cross-section whose diameter is controlled by a function 
𝐷𝐷𝐷𝐷(𝑥𝑥𝑥𝑥), the function of the diameters necessary so that there is no appearance of plastic 
zones along the beam is expressed by Equation (10) as follow: 
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𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥)            (10) 

 
Equation (10) could serve as a criterion for the resistance of the beam. It can be seen that 
the necessary resistive diameters are functions of the loading and of the plasticity 
threshold stress. The analytical determination of these diameters is often a complicated 
task. The complexity is relative to the load and the function itself. However, numerical 
analyzes for its determination are always available. 
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2.3 Elastoplastic analysis of beams with non-uniform sections

In the case of beams with non-uniform sections, the quadratic moment of the 
section being variable along the beam, the threshold moment also varies from 
one section to the other. In other words, the appearance of the plastic zones can 
take place at any section and not necessarily at the sections where the moment 
of flexion is greater. Thus, in order that the response of the beam is purely 
elastic in all the sections of the beam, the following condition must be satisfied, 
as given in Equation (9):
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Considering a beam of circular cross-section whose diameter is controlled 
by a function D(x), the function of the diameters necessary so that there is no 
appearance of plastic zones along the beam is expressed by Equation (10) as 
follow:
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Equation (10) could serve as a criterion for the resistance of the beam. It can be 
seen that the necessary resistive diameters are functions of the loading and of 
the plasticity threshold stress. The analytical determination of these diameters 
is often a complicated task. The complexity is relative to the load and the 
function itself. However, numerical analyzes for its determination are always 
available.

In the case of a cantilever beam of linearly variable cross-section in the 
longitudinal direction, with initial and final diameters designated respectively 
by D0 and D1, the function of the diameters is expressed by Equation (11) as 
follow:
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As illustrated in Figure 4, and differently to beams having uniform cross-
sections, the appearance of the plastic zones can take place first either at the 
embedding or elsewhere. It depends on the intensity of the linearity of the 
function of the diameters. Moreover, its evolution is relative to the intensity of 
the loading.
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Figure 4  Appearance of plastic areas in a non-uniform section beam
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It should be mentioned that it is possible to proceed in the same way for 
problems with different geometries and / or loadings. However, the complexity 
of the problem also depends on the complexity of the geometries and the 
loading.

2.3	 Large	deflection	formulation	

The problem of bending of beam with large deflection is shown in Figure 5. 
According to the classical beam theory based on Euler-Bernoulli's kinematic 
hypotheses, the straight sections of a beam remain straight and perpendicular 
to the average fiber. Thus, the transverse shear effect is assumed to be negligible. 
The bending curvature, as given in Equation (12) is assimilated to the derivative 
of the angle of rotation θ.
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Figure 5. Large deflection cantilever beam 

 
In large displacements and large rotations, the second derivative of the curvature is no 
longer assimilated to the deflection 𝑤𝑤𝑤𝑤. However, it is connected with it Equation (13) as 
follow: 
 

𝜒𝜒𝜒𝜒 =
𝜕𝜕𝜕𝜕2𝑤𝑤𝑤𝑤
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

�1+�𝜕𝜕𝜕𝜕𝑤𝑤𝑤𝑤𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥�
2
�
3/2             (13) 

 
Equations (13) have been the subject of numerous studies, the majority of which assumes 
that the displacements are so small that the magnitude (𝜕𝜕𝜕𝜕𝑤𝑤𝑤𝑤/𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥)2  2 representing the 
square of the arrow is negligible (Timoshenko, 1968; Da Silva , 2006) . This simplifying 
hypothesis can be expressed as in Equation (14): 
 
𝜒𝜒𝜒𝜒 = 𝜕𝜕𝜕𝜕2𝑤𝑤𝑤𝑤

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2
             (14) 

 
Equation (14) can be solved analytically by the direct integration of the curvature under 
the. However, equation (13) often requires numerical methods. In the literature (Chen, 
2010; Ang et al., 1993) there are many methods of resolutions. Assuming that the neutral 
axis does not undergo deformation, the length of the curve of the beam 𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙)  is calculated 
Equation (15) as follow: 
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Figure 5  Large deflection cantilever beam

In large displacements and large rotations, the second derivative of the 
curvature is no longer assimilated to the deflection w. However, it is connected 
with it Equation (13) as follow:
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Equations (13) have been the subject of numerous studies, the majority of 
which assumes that the displacements are so small that the magnitude (∂w/∂x)2 
2 representing the square of the arrow is negligible (Timoshenko, 1968; Da 
Silva , 2006) . This simplifying hypothesis can be expressed as in Equation (14):
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Equation (14) can be solved analytically by the direct integration of the curvature 
under the. However, equation (13) often requires numerical methods. In the 
literature (Chen, 2010; Ang et al., 1993) there are many methods of resolutions. 
Assuming that the neutral axis does not undergo deformation, the length of the 
curve of the beam s(l) is calculated Equation (15) as follow:
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Ang et al (Ang et al., 1993) proposes a numerical approach of resolution by 
setting y = (∂w/∂x). Thus, the equations which govern the bending of the 
cantilever beam in large displacements are summarized in Equation (16) as 
follow :
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Since the bending curvature is evaluated both in the elastic and in the 
elastoplastic domains, appropriate numerical schemes are needed to evaluate 
the deflection. The equations above correspond to differential equations. There 
are different methods to solve them. Euler's method of explicit integration is 
favored in this study. This choice is justified by the simplicity of implementation 
and the reduced computing time without the results being divergent. To do 
this, the length of the beam is divided into (N-1) elements defined by ∆x with 
N nodes. The coordinates of the nodes are designated by (x1, x2, x3, …, xN). The 
discretization of equations (16) is given by an expression in Equation (17) as 
follow :
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3.0 RESULTS AND DISCUSSION 

 
The results of the simulation focus on the validation of the method adopted in elasticity. 
The method is subsequently applied in elastoplasticity. 
 
3.1       Elastic validation  
 
We take up the example applied in the work of Chen (2010). A 0.2 𝑚𝑚𝑚𝑚 long cantilever 
beam has a non-uniform circular section with a diameter of 0.002 𝑚𝑚𝑚𝑚 at the fixed end and 
a diameter of 0.0002 𝑚𝑚𝑚𝑚 at its free end. The beam is considered to have a linear elastic 
behavior with a Young's modulus 𝐸𝐸𝐸𝐸 = 1.2 × 1011 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Pa. It is loaded vertically at its free 
end by a concentrated force with 4 loading levels 𝑃𝑃𝑃𝑃 =  (0.1.0.2.0.5, 1)𝑁𝑁𝑁𝑁. The deflection 
of the beam is illustrated in Figure. 6. The comparison of the results of the elastic 
deflections is presented in Table 1. It is noted that the results are so close that the present 
approach is validated. 
 
Table 1. Correlation of elastic deflections of the present work with those of Chen (2010) 
 
Force (N) 0.1 0.2 0.5 1 
𝒘𝒘𝒘𝒘/𝑳𝑳𝑳𝑳 Chen 0.124 0.203 0.328 0.430 

Present work 0.117 0.207 0.356 0.434 
𝒍𝒍𝒍𝒍/𝑳𝑳𝑳𝑳 Chen 0.977 0.941 0.860 0.779 

Present work 0.98 0.94 0.84 0.72 
 

                                                                                (17)
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3.0 RESULTS AND DISCUSSION

The results of the simulation focus on the validation of the method adopted in 
elasticity. The method is subsequently applied in elastoplasticity.

3.1 Elastic validation 

We take up the example applied in the work of Chen (2010). A 0.2 m long 
cantilever beam has a non-uniform circular section with a diameter of  
0.002 m at the fixed end and a diameter of 0.0002 m at its free end. The beam 
is considered to have a linear elastic behavior with a Young's modulus  
E=1.2× 1011  Pa Pa. It is loaded vertically at its free end by a concentrated force 
with 4 loading levels P = (0.1.0.2.0.5,1)N. The deflection of the beam is illustrated 
in Figure. 6. The comparison of the results of the elastic deflections is presented 
in Table 1. It is noted that the results are so close that the present approach is 
validated.

Table 1  Correlation of elastic deflections of the present work with those of Chen (2010)
Force (N) 0.1 0.2 0.5 1

w/L Chen 0.124 0.203 0.328 0.430
Present work 0.117 0.207 0.356 0.434

l/L Chen 0.977 0.941 0.860 0.779
Present work 0.98 0.94 0.84 0.72
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Figure 6. Elastic deflection 
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To demonstrate the influence of the non-uniformity of the section on the appearance of 
the plastic zone, two geometric configurations have been proposed as shown in Figure 7. 
It can be seen that in the configuration  , the plastic area did not appear at either end of 
the beam. Indeed, the diameters at the ends are so large that the beam resists there without 
this being the case throughout the beam. However, in the configuration 𝑏𝑏𝑏𝑏, where the 
diameter of the embedded end of the beam is so small that the plasticity appears therein 
without it being at the other free end. 
 
The usefulness of the non-uniformity of the section makes it possible to save material by 
recommending the optimal geometry. Thus, it is possible to provide a beam of the same 
volume but with a different geometry than that of the configuration a (𝐷𝐷𝐷𝐷0 = 0.0055,𝐷𝐷𝐷𝐷1 =
0.0025) without there being any plastic zone. 
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3.2 Application in elastoplasticity

Considering a bilinear elastoplastic material, the moment curvature relation 
is nonlinear. Consider a beam of length L with a non-uniform circular cross-
section with the largest diameter D0 at the fixed end while the smallest D1 at 
its free end. The parameters of the material of which it is composed (Pandit & 
Srinivasa, 2016) are represented by the Young modulus E=2.1 ×1011 Pa and the 
tangent modulus H=0.25E.

3.2.1	 Appearance	and	evolution	of	the	plastic	zone

To demonstrate the influence of the non-uniformity of the section on the 
appearance of the plastic zone, two geometric configurations have been 
proposed as shown in Figure 7. It can be seen that in the configuration, the 
plastic area did not appear at either end of the beam. Indeed, the diameters 
at the ends are so large that the beam resists there without this being the case 
throughout the beam. However, in the configuration b, where the diameter of 
the embedded end of the beam is so small that the plasticity appears therein 
without it being at the other free end.

The usefulness of the non-uniformity of the section makes it possible to save 
material by recommending the optimal geometry. Thus, it is possible to 
provide a beam of the same volume but with a different geometry than that 
of the configuration a (D0 = 0.0055, D1 = 0.0025) without there being any plastic 
zone.
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(a) (𝐷𝐷𝐷𝐷0 = 0.006,𝐷𝐷𝐷𝐷1 = 0.002)𝑚𝑚𝑚𝑚 
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Figure 7. Appearance of the plastic zone in the beam 
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3.2.2	 Influence	of	loading

The beam is subjected to three load levels of 10, 15 and 20 N, respectively. The 
geometry of the beam is maintained in the configuration (D0 = 0.004, D1 = 0.002)
m. Figure 8 shows the curvature generated in the beam by the three loading 
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levels. Since it is zero at the free end, it evolves nonlinearly as a function 
of the bending moment and the geometry of the beam as it moves towards 
the fixed end. Although the bending moment is maximal at the level of the 
fixed end, the curvature is not there. This is explained by the increase in the 
diameter allowing it to be resistant. The moment curvature relationship in the 
beam is translated by the curves in Figure 9. The non-uniformity of the section 
influences considerably on the shape of the curves. Thus, different curves can 
be provided by varying the cross-section along the beam. The evolution of the 
plastic zone under the three loads is illustrated in Figure 10. It can be seen that 
the loading influences significantly on the plastic zone, both according to the 
length and the height of the beam.

Figure 11 illustrates a confrontation of the elastic deflections with the 
elastoplastic deformations of the beam under the three loads. The elastoplastic 
déflections are larger than the elastic deflections under the highest loadings. 
This explains why plasticity is very sensitive to loading.
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geometry of the beam as it moves towards the fixed end. Although the bending moment 
is maximal at the level of the fixed end, the curvature is not there. This is explained by 
the increase in the diameter allowing it to be resistant. The moment curvature relationship 
in the beam is translated by the curves in Figure 9. The non-uniformity of the section 
influences considerably on the shape of the curves. Thus, different curves can be provided 
by varying the cross-section along the beam. The evolution of the plastic zone under the 
three loads is illustrated in Figure 10. It can be seen that the loading influences 
significantly on the plastic zone, both according to the length and the height of the beam. 
 
Figure 11 illustrates a confrontation of the elastic deflections with the elastoplastic 
deformations of the beam under the three loads. The elastoplastic déflections are larger 
than the elastic deflections under the highest loadings. This explains why plasticity is very 
sensitive to loading. 
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Figure 9. Moment curvature relationship in the beam 

 

 
Figure 10. Evolution of the plastic area 
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Figure 11. Evolution of the deflection of the beam 

 
 
4.0 CONCLUSION  

 
The present work analyzes the elastoplastic behavior of a beam of non-uniform cross-
section in large displacements. The mathematical equations controlling the behavior and 
the geometry of the beam were formulated. From a material point of view, since the 
moment curvature relation is nonlinear, Newton-Raphson's method has been favored for 
its resolution. On the geometrical plane, the formulation in large displacements leads to 
ordinary differential equations solved with the integration method of Euler. This analysis 
has demonstrated the effect of the non-uniformity of the section of the beam on the 
appearance of plastic zones where a resistance criterion has been established. 
 
The results of the elastic analysis of beams with non-uniform sections in large 
displacements were compared with others in the literature. The good coherence observed 
made it possible to validate the approach. In elastoplasticity, only a presentation and 
interpretation of the results was discussed. Validation by experimental tests remains in 
perspective.SI units must be used throughout the manuscript. 
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4.0 CONCLUSION 

The present work analyzes the elastoplastic behavior of a beam of non-uniform 
cross-section in large displacements. The mathematical equations controlling 
the behavior and the geometry of the beam were formulated. From a material 
point of view, since the moment curvature relation is nonlinear, Newton-
Raphson's method has been favored for its resolution. On the geometrical plane, 
the formulation in large displacements leads to ordinary differential equations 
solved with the integration method of Euler. This analysis has demonstrated 
the effect of the non-uniformity of the section of the beam on the appearance of 
plastic zones where a resistance criterion has been established.

The results of the elastic analysis of beams with non-uniform sections in large 
displacements were compared with others in the literature. The good coherence 
observed made it possible to validate the approach. In elastoplasticity, only 
a presentation and interpretation of the results was discussed. Validation by 
experimental tests remains in perspective.SI units must be used throughout 
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