CHARACTERIZATION OF MAJOR INTERSECTIONS IN AKURE, NIGERIA

O. J. Oyedepo¹, A. O. Owolabi², E. E. Okoko³

^{1, 2}Department of Civil Engineering, Federal University of Technology, Akure, Nigeria.
³Department of Transport Technology, Federal University of Technology, Akure, Nigeria.

Article History: Received 15.8.2018; Revised 24.5.2019; Accepted 29.5.2019

ABSTRACT

The performance of intersections and drivers' behaviour are crucial to road network opperational efficiency and safety; while Gap acceptance is an important parameter associated with its assessment. Five intersections comprising of three Tees (RN₁, RN₂, RN₃) and two Cross (RN₄, RN₅) critical to traffic flow were selected for detailed study. Data on Goemtric features were collected using odometer while video recording technique was used to collect data on gap acceptance parameters, vehicle waiting and arrival time. The data were analyzed using logit and Raff methods. Average carriageway widths of 7.12 m was obtained which is less than 7.30 m specified, leading to the reduction of the Level of Service (LOS). The operating LOS for the Tee and Cross intersections, were "E" and "F" respectively indicating that travel speeds were substantially restricted and roadway operations were with extreme delays as indicated in the Highway Capacity Manual. The analysis of the critical gap resulted in average values of 7.46 sec, 8.02 sec, and 8.07 sec respectively for RN₂, RN₃ and RN₄ which are higher than the recommended value for left turning in the HCM 2000; indicating that the subject vehicle drivers were conservatives and appeared to choose a gap that were sufficiently long to avoid a collision or major conflict. However, the values of 6.33 sec and 6.87 sec were obtained for RN1 and RN5 respectively signifying that the drivers were aggressive at the intersections. Intelligent transport systems is recommended for traffic management in the study area.

KEYWORDS: Drivers; intersection; level of service; traffic management

1.0 INTRODUCTION

Intersections are the most critical points for the operation of an urban road network. They usually constitute major bottlenecks, due to conflicting interactions between traffic streams in different directions as illustrated in Figure 1.

^{*}Corresponding Email: ojoyedepo@futa.edu.ng

Studies on traffic characteristics at intersections have been focused more on signalized than unsignalized ones globally; the perception has been that research on unsignalized intersections is unnecessary, since most intersections are signalized and so very limited studies has been reported especially in developing countries like Nigeria (Owolabi et al., 2016). To effectively characterize intersections, knowledge of geometric features, gap acceptance parameters and magnitude of delay is essential. While the critical gap and follow-up time are the two main gap acceptance parameters, delay is one of the principal parameters used as measure of effectiveness to determine the level of service (LOS).

According to Nagalla et al., (2017), driver's gap acceptance behaviour highly influences the performance and safety of unsignalized intersections. At unsignalized intersections, crossing drivers have to accept or reject the available gap; thus, it gives gap acceptance a unique condition for analysis.

Figure 1 Types of movement at intersections

Several studies have been carried out to determine drivers characteristics and examine various aspects of gap acceptance behavior at intersections, using either deterministic or stochastic methods. Examples of deterministic methods include the Raff's method (Fitpatrick, 1991; Gattis and Low, 1999); the stochastic methods include Logit model (Pollatschek et. al., 2002; Rossi et. al., 2013; Cassidy et al., 1995; Gattis and Low, 1998; Yan and Radwan, 2008; Harwood et. al., 2000; Zohdy et al., 2010), Probit model (Hamed and Easa, 1997; Lassarre et al., 1991). Dangazo 1981 used the "probit model" to reflect the heterogeneity of drivers behaviors and estimate the parameters of normal distribution of the

intersection critical gap. He found that there were diversities not only between different drivers, but also with the same driver. That is different drivers as well as the same driver behave differently to the same gap size. Cassidy et al. (1995) used binary logit model to estimate the mean of the single-value critical gap function to evaluate capacity and delay experimentally; with this model, he concluded that delay affect gap acceptance at intersections.

Furthermore, Kita (1993) formulated a gap acceptance model at the merging sections of freeways; he use binary logit model as the explanatory variable such as distance of the acceleration lane, agp and relative velocity. In the research conducted by Yang and Koutsopoolis (1996), they presented a rule based lane changing model applied to freeways. They provided changeable lanes, lane changing scenarios, and modeled cases where drivers faced conflicting objectives. In addition, the critical gap at an unsignalized intersection was also determined through the gap acceptance concept using fixed critical gap for each vehicle, which varied over a population size as described in Equation 1.

$$P(t) = \frac{1}{\beta \Gamma(k)} X\left(\frac{t-a}{\beta}\right)^{k-1} X e^{\left(\frac{t-a}{\beta}\right)}$$
(1)

Where:

P(t) is the probability density function of headway (t);

a and β are location and scale parameter;

K is parameter that determines the shape of the distribution.

Reseacher also have used the utility maximization principle, originated from the choice theory, to obtain the probability of a gap occurring as described in Equation 2.

$$C_{pi} = \frac{_{3600}}{t_m} X e^{\frac{t_o x \sum_j V_{cj}}{_{3600}}}$$

$$t_o = t_g - \frac{t_m}{2}$$
(2)

where:

 $C_{p\lambda}$ is the potential capacity of minor movement i in P.C.U./hr, V_{cj} is the volume of traffic in conflicting stream j in vph; t_g is the critical acceptance gap in seconds; t_m is the follow –up time in seconds

Consequently, McGowen and Stanley (2012) in a recent study proposed an alternative model for estimating the critical gap, which could yield accurate estimates of the mean critical gap as long as accurate estimates of the major street traffic were given. Also, Fuzzy Logic was used by Rossi et. al., (2012) to properly treat the uncertainty, which affects gap-acceptance decision process. Vasconcelos et al. (2013) compared different methods to estimate critical headway at roundabouts and suggested that locally calibrated parameters should be used for capacity calculations. In another research conducted by Rossi et. al., (2012), Fuzzy Logic was used by to properly treat the uncertainty, which affects gap-acceptance decision process. However, Zhou et al., (2014) identify factors that may influence the gap acceptance behavior of drivers who turn left from the major road at unsignalized intersections. A correlated logit models were used to estimate the probability of accepting a gap. They found that the gap duration, the number of rejected gaps, the mean and total time interval of the rejected gaps and the gender of the driver were all significant in explaining the variation of the gap acceptance probability. Also, Nagalla et al., (2017), analyzed gap acceptance behavior at unsignalized intersections using support vector machines, decision tree and random forests, they opined that decision tree generated by CART algorithm provides critical insights into decision making process employed by the driver. Random forests and decision tree implicitly establish the relative importance of different factors affecting the driver's decision.

The study is design to characterize the major intersections in Akure, Nigeria using geometric features, average delay and gap acceptance.

2.0 THE STUDY AREA

Akure the capital city of Ondo State is one of the fastest growing urban settlements in the South Western region of Nigeria with a population of 387,087 according to 2006 census. It is located on latitude 7° 15′ 00″ N and longitude 5° 12′ 00′′E and has an area of 30.02 square kilometres. The city of Akure was not planned *ab-initio* and as a result of this, there is minimal functional relationship between the various land uses. According to Fasakin (2000), Akure is composed mainly of residential areas forming over 90% of the developed area with additional activities such as warehousing; manufacturing, workshops and other

commercial activities are that are located within the residential neighborhoods.

Over the years, the number of vehicles on its roads has increased greatly due to increasing socioeconomic activities. Increase in infra-structural facilities such as housing, electricity, water supply and transportation caused rural – urban migration has imposed serious strains on existing transportation infrastructure resulting in traffic congestion (Owolabi 2004). Owolabi (2004) further affirmed that the poorly developed road network and inefficient traffic management techniques in the metropolis often create chaotic traffic pattern, since then the situation has not changed much. The natural pattern of development in Akure township is linear along main roads; Oyemekun-Oba Adesida road and Arakale-Oda road. These roads connect other streets like Aiyedun, Isolo, Araromi, Oke-Ijebu, Elerinla, Fanibi, Isikan and Adegbola residential areas.

In Akure metropolis, unsignalized intersections are the most common where they are controlled by Stop and Yield signs as well as control by the pretimed traffic signal. The traffic composition is mixed and dominated by taxis, motorcycles and minibuses (Owolabi, 2009). In the study by Oyedepo (2014), 49.82% of the vehicle sample passenger's car, 39.87% were motorcycles, and 9.37% were buses, while 2axle- load and 3axle-load were 0.73% and 0.21% respectively. Figure 2 is the map of Ondo State showing the study area.

Figure 2 Map of Ondo State Showing the Study Area (Rectas Archive Ile-Ife, 2006)

3.0 METHODOLOGY

Five intersections shown in Figure 3 consisting of three Tee intersections namely Road block (RN₁), Cathedral (RN₂), Akure Town hall-Araromi junction (RN₃), and two Cross intersections which are NEPA (NR₄) and Odole (RN₅) critical to traffic flow in the study area were selected. Data on geometric features were collected using odometer. Video recording technique was used to collect data on gap acceptance parameter and vehicle waiting/ arrival time. The camera was stationed at an elevated vantage point from the roadside of the selected intersections to observe the movements of vehicles. Two cine cameras were used at each intersection to provide complementary views, and hidden from drivers so that they would not be distracted from exhibiting their normal behavioral patterns.

Digital video recordings were made of drivers turning left from the major road and their gap acceptance behavior at each intersection. The video was processed later in the lab to extract data needed such as the time when the left turning vehicle arrived, the gap length in the oncoming traffic, and whether or not the gap was accepted by the driver.

The delay was measured by taking note of how long a vehicle waited at a particular approach before having right-of-way. Both Logit and Raff methods were used to evaluate tc. The geometric features, gap acceptance parameters and delay were used for intersections characterization. The delay and tc at each intersection were compared with the recommended standard in the HCM 2000 to facilitate intersection's characterization.

4.0 RESULTS AND DISCUSSION

The geometric features of the selected intersections in Table 1 shows that the Tee and Cross intersections have average carriageway width of 7.20 m, 7.0 m, and 7.15 m at RN_1 , RN_3 and RN_5 respectively which is less than 7.30 metres specified by the Nigerian Highway Capacity Manual. The implication is that those intersections were not operating at their full capacity as such were operating at reduced LOS. Tables 2 to 6 show the analysis of gap acceptance for the selected intersections using Logit (Stochastic) method while Figure 4 to 8 presents the analysis using Raff method.

S/N	Intersection	Types of Intersection	m _{sw} (m)	m _n	m _w (m)
1.	Road Block (RN ₁)	Tee TWSC	7.10	2	7.30
2.	Cathedral(RN ₂)	Tee TWSC	7.30	2	7.30
3.	Araromi-Town Hall (RN ₃)	Tee TWSC	7.20	2	6.80
4.	NEPA –Federal Secretarial Junction (RN4)	Cross	7.30	2	7.3
5.	Odole (RN5)	Cross	7.30	2	7.0

 Table 1 Geometric features of the selected intersection

Note: m_{sw} is the major street width in metres;

 m_n is the number of lane of minor movement; m_w is the minor approach width in metres

		WX ²	0.860	7.098	16.410	68.261	156.500	556.325	815.497	702.250	460.076		2783.276											
		WXY	-2.710	-9.606	-15.595	-33.628	-28.259	-8.912	85.934	19.711	78.127		85.063											
		ХM	0.905	3.640	5.563	17.281	31.616	93.500	117.338	88.333	51.405		409.581										= N *	
(RN_1)		WΥ	-2.853	-4.926	-5.286	-8.513	-5.709	-1.498	12.365	2.479	8.729		-5.212										ms, W	
dblock		W	0.952	1.867	1.886	4.375	6.387	15.714	16.883	11.111	5.744		64.919										l logaritl	
for roa		Y	-2.996	-2.639	-2.803	-1.946	-0.894	-0.095	0.732	0.223	1.520												= natura	
inor road		P/(1-P)	0.050	0.071	0.061	0.143	0.409	0.909	2.080	1.250	4.571				WΧ	WX^2	-2584.09	199.182				t _c =6.31 sec	LN=	
from m		Р	0.048	0.067	0.057	0.125	0.290	0.476	0.675	0.556	0.821	1.00			W	WX	-409.581	0.000					$\left(\frac{d}{d-1}\right)N$	
eft turn		Z	21	30	35	40	31	63	TT	45	39	25	406		WΥ	WXY	32.8854	117.948	0.59216				nce, Y=I	
d rejected gaps of l	Cumulative of observed rejection		223	203	175	142	107	85	52	27	7	0		-6.31								-3.8163	of observed acceptai	
le 2 Accepted and	Cumulative of observed	acceptance	0	2	4	6	18	48	100	125	157	182		Factor	EQ1	EQ2	EQ1*Factor	EQ1+EQ2	Slope	-Y=YXW	Intercept*sum(WX)+ Slope*Sum(WX ²)	Y-intercept	IS P = probability	$tor^* \sum WY$
Tab	Number of observed	rejection	20	28	33	35	22	33	25	20	7	0	223										observation	EQ ₁ =Fac
	Number of observed	acceptance	1	2	2	5	6	30	52	25	32	25	183										= number of	actor= $\frac{\sum WX}{\sum W}$
	Gap Class	X(secs	0.95	1.95	2.95	3.95	4.95	5.95	6.95	7.95	8.95	9.95											Where: N:	P(1-P) F

> Vol. 10 No. 1 January - June 2019 ISSN: 2180-3811

39

Table 3 Accepted and rejected gaps of left turn from minor road for cathedral (RN_2)

Gap Class	Number of observed	Number of	Cumulative of observed accentance	Cumulative of observed									
X(sec	acceptanc	observed		rejection	Z	đ	P/(1-P)	>	M	WV	WX	WXV	WX2
20 U	1	33	0	246	75	0.029	0.030	3 497	0 971	-2 304	0 922	-3 224	0 876
2.0	1	31	1	213	5	(10.0	0000		11000		1		000
1.95					32	0.031	0.032	3.434	0.969	-3.327	1.889	-6.487	3.684
2.95	1	22	2	182	23	0.043	0.045	- 3.091	0.957	-2.957	2.822	-8.722	8.324
3.95	2	15	4	160	17	0.118	0.133	- 2.015	1.765	-3.556	6.971	-14.045	27.534
4.95	10	23	14	145	33	0.303	0.435	- 0.833	6.970	-5.805	34.500	-28.735	170.775
5.95	6	31	23	122	40	0.225	0.290	- 1.237	6.975	-8.626	41.501	-51.327	246.932
6.95	19	35	42	91	54	0.352	0.543	- 0.611	12.315	-7.523	85.588	-52.286	594.836
7.95	46	41	88	56	87	0.529	1.122	0.115	21.678	2.494	172.341	19.831	1370.114
8.95	45	15	133	15	09	0.750	3.000	1.099	11.250	12.359	100.688	110.617	901.153
9.95	22	3	155	0	25	0.88	7.333	1.992	2.640	5.260	26.268	52.337	261.367
10.95	12	0	167	0	12	1.00							
11.95	1	0	168	0	1	1.00							
	169	249			418				66.488	-15.074	473.490	17.958	3585.595
			Factor	-7.12									
			EQ1		WY	W	WX						
			EQ2		WXY	WX	WX^2						
			EQ1*Factor		107.3451	473.49	- 3371.91						
			EQ1+EQ2		125.303	0.000	213.685						
			Slope		0.586389								
			WXY=Y- Intercept*sum(WX)+ Slope*Sum(WX ²)										
			Y-intercept	-4.40263		tc=7.12sec							

		\$	vis i secopica e	יווע זראריייע אי	-			0000000			10.		
Gap	Number of observed	Number of	Cumulative of observed	Cumulative of observed									
Class X(secs	acceptance	observed rejection	acceptance	rejection	Z	Ч	P/(1-P)	Y	M	WΥ	ХW	WXY	WX^2
0.95	0	32	0	246	32	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.95	0	28	0	214	28	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.95	1	31	1	186	32	0.031	0.032	-3.434	0.969	-3.327	2.858	-9.814	8.431
3.95	2	33	3	155	35	0.057	0.061	-2.803	1.886	-5.286	7.449	-20.881	29.422
4.95	5	27	8	122	32	0.156	0.185	-1.686	4.219	-7.114	20.883	-35.217	103.370
5.95	2	18	10	95	20	0.100	0.111	-2.197	1.800	-3.955	10.710	-23.532	63.725
6.95	11	19	21	77	30	0.367	0.579	-0.547	6.967	-3.808	48.418	-26.463	336.507
7.95	18	33	39	58	51	0.353	0.545	-0.606	11.64 7	-7.060	92.594	-56.125	736.123
8.95	45	25	84	25	70	0.643	1.800	0.588	16.07	9.447	143.839	84.547	1287.36 2
9.95	52	8	136	0	60	0.87	6.500	1.872	6.933	12.978	68.987	129.129	686.417
					0								
					0								
	136	254			390				50.49 2	-8.125	395.738	41.645	3251.35 6
			Factor	-7.84									
			EQ1		WΥ	W	WX						
			EQ2		WXY	WX	WX^2						
			EQ1*Factor		63.68424	-395.738	-3101.66						
			EQ1+EQ2		105.329	0.000	149.693						
			Slope		0.703634								
			WXY=Y- Intercept*sum(WX) + Slope*Sum(WX ²)										
			Y-intercept	-5.67578		t _c =7.83se c							

Table 4 Accepted and rejected gaps of left turn from minor road for town hall (RN₃)

Table 5 Accepted and rejected gaps of left turn from minor road for NEPA (RN_4)

				-0 (-	1-		
Gap	Number of observed	Number of	Cumulative of observed	Cumulative of observed									
Class X(secs	acceptance	observed rejection	accepta nce	rejection	Z	Р	P/(1- P)	Υ	M	ΨY	ХW	WXY	WX ²
0.95	0	40	0	264	40	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.95	0	37	0	224	37	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.95	0	25	0	187	25	0.000	0.000			0.000	0.000	0.000	0.000
3.95	1	27	1	162	28	0.036	0.037	-3.296	0.964	-3.178	3.809	-12.554	15.045
4.95	1	32	2	135	33	0.030	0.031	-3.466	0.970	-3.361	4.800	-16.636	23.760
5.95	8	18	10	103	26	0.308	0.444	-0.811	5.538	-4.491	32.954	-26.723	196.075
6.95	15	21	25	85	36	0.417	0.714	-0.336	8.750	-2.944	60.813	-20.462	422.647
7.95	18	36	43	64	54	0.333	0.500	-0.693	12.000	-8.318	95.400	-66.126	758.430
8.95	45	28	88	28	73	0.616	1.607	0.474	17.260	8.189	154.479	73.294	1382.591
9.95	52	8	140	0	60	0.87	6.500	1.872	6.933	12.978	68.987	129.129	686.417
					0								
					0								
	140	272			412				52.416	-1.125	421.241	59.923	3484.966
			Factor	-8.04									
			EQ1		WY	W	ΜX						
			EQ2		WXY	WX	WX^2						
			EQ1*Factor		9.040599	-421.241	- 3385.3						
			EQ1+EQ2		68.964	0.000	99.661						
			Slope		0.691981								
			WXY=Y- Intercept*sum(WX)+ Slope*Sum(WX ²)										
			Y-intercept	-5.58257		tc=8.04sec							

42

٦

Figure 4 Cumulative plot of observed acceptance and observe rejection for left turning vehicle from the minor road for RN₁

Figure 5 Cumulative plot of observed acceptance and observed rejection for left turning vehicle from the minor road for RN₂

Figure 6 Cumulative plot of observed acceptance and observe rejection for left turning vehicle from the minor road for RN₃

Figure 7 Cumulative plot of observed acceptance and observe rejection for left turning vehicle from the minor road for RN₄

Figure 8 Cumulative Plot of Observed Acceptance and Observe Rejection for Left Turning Vehicle from the Minor Road for RN5

The critical gap values were estimated to the nearest 0.5 second interval from Figures 4 to 8. Table 7 gives the recommended critical gap and follow-up time, while Table 8 is the LOS criteria for intersections in accordance with HCM 2000. Table 9 gives a comparison of the critical gap at the selected intersections using both Logit and Raff methods.

Vehicle Movement	Critical Gap (t _c) in sec for two lane Major Street	Lag t _f in sec
Left turn from major road	4.1	2.2
Right turn form minor road	6.2	3.3
Through traffic on minor	6.5	4.0
Left turn from minor	7.1	3.5

Table 7 Recommended critical gap and lag

Source: HCM 2000

LOS	Signalized Delay per Vehicle	Unsignalized Delay per	Description
	(sec/veh)	Vehicle(sec/veh)	
A	0-10	0-10	Free flow traffic conditions with very low delay at intersections.
В	>10-20	>10-15	Reasonably unimpeded traffic operations with only short traffic delays at intersections.
C	>20-35	>15-25	Stable operating conditions with average traffic delays at intersections
D	>35-55	>25-35	Operating conditions result in lower travel speeds and higher delays intersections
Е	>55-80	>35-50	Travel speeds are substantially restricted with problems likely to occur at intersections
F	>80	>50	Roadway operations are over capacity with extreme delays likely at intersections

Table 8 Level of service criteria for intersections

Source: HCM 2000

Tuble y	Sammary	or entited oup	r maryolo uomig E	ogit und run i	ieurou
Intersection	Metho	od of Analysis	for tc in sec	Average Delay (sec)	Remarks
	Logit	Raff	Average Value		
RN1	6.31	6.35	6.33	62.68	F
RN2	7.12	7.80	7.46	43.36	Е
RN3	7.83	8.21	8.02	45.89	Е
RN4	8.04	8.10	8.07	49.07	Е
RN5	7.26	6.47	6.87	40.88	Е

Table 9 Summary of Critical Gap Analysis using Logit and Raff Method

Results of the critical gap using both Logit and Raff methods show that there are differences in critical gap among the selected intersection; the values obtained using Raff method were generally more than those obtained using Logit method for all the intersections except at RN_5 . Comparing the values obtained with the recommended values for left turning in Table 7, average values of 7.46 sec, 8.02 sec and 8.07 sec respectively were obtained for RN_2 , RN_3 and RN_4 which indicate that the subject vehicle (SV) drivers were conservatives and appear to choose a gap that is sufficiently long to avoid a collision or major conflict.

However, values of 6.33 sec and 6.87 sec were obtained for RN_1 and RN_5 respectively indicating that the drivers were somewhat impatient at those intersections. Also, observations show that SV drivers may vary considerably in their preference to what constitutes an acceptable gap, this might be due to the fact that the study locations have different land use, geometric and traffic patterns. Comparing the result of average delay obtained in Table 9 with the LOS criteria for intersection in Table 8; RN_1 falls within the LOS E where travel speeds are substantially restricted, thus, traffic congestion is inevitable at the intersections.

5.0 CONCLUSION

The appraisal of geometric features of RN₁, RN₃, and RN₅ indicates that average carriageway width were less than 7.30 metres specifies by the Nigerian Highway Capacity Manual. The implications is that the intersections were not operating at their full capacity which reduces their LOS. The LOS "E" and "F" obtained for Tee and Cross intersections respectively indicates that the operating conditions were not favourable. Also, the values of the critical gap obtained for RN2, RN3, and RN4 were more than the recommended value of 7.1 sec which indicate that the SV drivers are conservative, while the value obatined for RN1 and RN5 that is more than the recommended value of 7.1 sec show that the drivers at these intersections were somewhat impatient. In order to improve the flow of traffic in the study area, the following measures are recommended:

- Provisions of effective and efficient traffic signal to control traffic at the cross intersections and traffic warden at the tee intersections; this will minimize delay and provide safety to traffic and pedestrians by reducing the conflicting movements;
- ii. Increasing effectiveness of regulatory and enforcement mechanisms through traffic education, this will enlighten road users on traffic safety consciousness and traffic rules concept to create a good traffic circumstance in order to realize the modern and efficient transportation management; and
- iii. Introducing intelligent transport systems for traffic management.

The above recommendations will improve the LOS and ensure smooth flow of traffic at the study locations.

ACKNOWLEDGEMENT

The authors are grateful to Federal University of Technology, Akure, Nigeria for the technical and financial assistance in completing the research work.

REFERENCES

- Cassidy, M., Madanat, S. M., Wang, M. H., and Yang, F. (1995). Unsignalized intersection capacity and level of service: revisiting critical gap. *Transportation Research Record*, 1484:16–22.
- Daganzo, C. F. (1981). Estimation of gap acceptance within and across the population from direct roadside observation. *Transportation Research Part B: Methodological*, 15:1-15.
- Fasakin J.O. (2000). A land use analysis of urban deprivation in Akure Ondo State Nigeria (Unpublished PhD thesis), School of Postgraduate Studies Federal University of Technology Akure, Nigeria.
- Federal Ministry of Works (2013). Highway manual part 1:Design, volume 1: Geometric design.
- Fitpatrick, K. (1991). *Gaps Accepted at Stop Controlled Intersections*. Washington, D.C: Transportation Research Board.
- Gattis, J. L. and Low, S. T. (1998). Gap acceptance at nonstandard stop-controlled intersections. Mack-Blackwell National Rural Transportation Study Center, University of Arkansas.
- Gattis, J. L., and Low, S. T. (1999). Gap acceptance at typical stop controlled intersection. *Journal of Transportation Engineering*, 125 (3):201-207.
- Highway Capacity Manual (2000). Transportation Research Board Special Report 209, Washington, DC.
- Hamed, M. M. and Easa, S. (1997). Disaggregate gap-acceptance model for unsignalized t-intersections, *Journal of Transportation Engineering*, 123 (1):36-42.

- Harwood, D. W., Mason, J. M., and Brydia, R. E. (2000). Sight distance for stopcontrolled intersections based on gap acceptance. *Transportation Research Record Washington*, 1701:32–41.
- Kita, H. (1993). Effects of merging lane length on the merging behavior at expressway on-ramps, in C.F. Daganzo (ed.), *Transportation and Traffic Theory*, 12th International Symposium on The Theory Of Traffic Flow And Transportation, Berkeley, Calif, 37–51
- Lassarre, S., Lejeune, P., and Decret, J. C. (1991). Gap acceptance and risk analysis at unsignalized intersections. Intersections without traffic signals II, *Proceeding of the International Workshop, Bochum, Germany*, 258–269.
- McGowen, P., and Stanley, L. (2012). Alternative methodology for determining gap acceptance for two-way stop-controlled intersections, *Journal of Transportation Engineering* 138(5): 495–501.
- National Population Commission (2006): Nigerian Population Census.
- Nagalla, R., Pothuganti, P., and Pawar, D. S. (2017). Analyzing gap acceptance behavior at unsignalized intersections using support vector machines, decision tree and random forests, The 8th International Conference on Ambient Systems, Networks and Technologies (ANT 2017), Procedia Computer Science 2017, 474–481.
- Ogunmodede, E. F. (2006). Map of ondo state. Regional Centre for Training in Aerospace Surveys, Obafemi Awolowo University Ile – Ife Osun State Nigeria.
- Owolabi, A. O. (2004). Intra- modal competition in urban para-transit systems: case study of Akure Metropolis (Unpublished Ph.D Thesis), School of Postgraduate Studies, Federal University of Technology, Akure Nigeria.
- Owolabi, A. O. (2009). Paratransit modal choice in Akure, Nigeria Applications of behavioral models. *Institution of Transportation Engineers Journal*, 79 (1):54-58.
- Oyedepo, O. J. (2014). Predictive model of traffic flow at urban road intersection: A case study of Akure Metropolis (Unpublished PhD Thesis), School of Postgraduate Studies, Federal University of Technology Akure, Nigeria.
- Owolabi, A. O., Oyedepo, O. J., and Okoko, E. E. (2016). Predictive modelling of traffic flow in Akure, Nigeria: Unsignalized intersections in focus, *Journal of Urban and Environmental Engineering*, 10 (2):278-278.

- Pollatschek, M. A., Polus, A., and Livneh, M. (2002). A decision model for gap acceptance and capacity at intersections. *Transportation Research B*, 36 (7):649–663.
- Rossi, R., Gastaldi, M., Gecchele, G., and Meneguzzer, C. (2012). Comparative analysis of random utility models and fuzzy logic models for representing gap-acceptance behavior using data from driving simulator experiments. *Proceeding of 15th Meeting of the EURO Working Group on Transportation, Padova, Italy.*
- Rossi, R., Meneguzzer, C., and Gastaldi, M. (2013). Transfer and updating of Logit models of gap-acceptance and their operational implications. *Transport Research, Part C*, 28: 142–154.
- Yan, X., and Radwan, E. (2008). Influence of restricted sight distances on permitted leftturn operation at signalized intersections. *Journal of Transportation Engineering*, 134(2):68-76.
- Yang, Q. and H. N. Koutsopoulos (1996). A microscopic traffic simulator for evaluation of dynamic traffic management systems, *Transportation Research Part C*, 4 (3):113-129.
- Zhody, I., Sadek, S., and Rakha, H. A. (2010). Empirical analysis of effects of wait time and rain intensity on driver left-turn gap acceptance behavior. *Transportation Research Record Washington*, 2171:1–10.
- Zhou, H., Ivan, J. N., Gårder, P. E., and Ravishanker, N. (2014). Gap acceptance for left turns from the major road at unsignalized intersections, *Transport*, 32 (3):252– 261.