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ABSTRACT

This study presents a Cluster Head Assisted Routing (CHAR) scheme aimed at reducing 
the burden on Cluster Heads (CHs) while maintaining the hierarchical structure and its 
advantages. The Assisting Cluster Head (ACH) collates data within the cluster while the 
cluster head (CH) is left with the task of transmitting collated data towards the base station 
(BS). In this manner, the huge energy burden hitherto on the CH is reduced. An energy cost 
function is developed; which considers the residual energy of the nodes and the energy burden 
imposed on the cluster should any member is elected as a head. The node that best satisfies the 
two criteria is favored to be elected as the head. Simulations were carried out in MATLAB 
and in a test bed using ESP8266, conditioned with power supply unit, a voltage measuring 
circuit and a firmware, as the wireless sensor nodes. The results revealed an improvement 
in the energy consumption profile of the CHAR over non cluster head assisted routing. The 
CHAR scheme recorded a 12.9% improvement in round-count before First Node Death 
(FND). Other parameters compared are Last Node Death (LND), Residual energy per round 
and energy left unused at the end of the experiment.

KEYWORDS: Wireless sensor network; routing protocols; algorithms; and power 
management

1.0 INTRODUCTION

Wireless Sensor Networks (WSNs) have received a great deal of attention owing 
to their wide range of applications, and the great potentials minimize cost and 
improve efficiency of communication systems. They find useful applications 
in Security (surveillance, detection of IEDs) (Salman-ul-Hassan, Zoya, Fatima, 
& Umer, 2012), traffic management (monitor the flow of traffic and best route 
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detection in real time) (Munienge, Ekabua, & Isong, 2015), biomedical applications 
(body sensor network) (Sing-Hui, Kyeong-Hoon, Wan-Young, & Seung-Chul, 
2009), industrial control and automation (Kay, Win, & Meng, 2005), and in study-
data capturing in environments that maybe hazardous or sometimes inaccessible 
by humans (Lohith, & Bharatesh, 2015; Sasi, Sushmita, & Amuya, 2013). Although 
WSNs have been variously applied, the potential of this technology is still limited 
by a number of design constraints. Some of the important and widely studied issues 
with WSNs as highlighted by Himani (2014), namely security, hardware design, 
energy and power management challenges. The security of a WSN, as with any 
other networks, influences its operability and is also one of the crucial factors that 
determines whether a network is available or not. According to Lohith & Bharatesh 
(2015), security issues in WSNs involved data authentication, data confidentiality, 
and data integrity and data freshness. 

The life and operations of a wireless sensor node are solely dependent on 
availability of power (typically batteries). Subject to the peculiarities of 
application, the required life span may be a few hours or may extend to several 
years (Kay & Friedmann, 2004). Since these batteries are typically limited in 
size and capacity, and in many applications, infeasible to replace, it is essential 
to minimize, if not eliminate, all forms of energy wastages and ensure optimal 
utilization of this limited supply. To this extent, several studies in WSN have 
converged on the fact that, most of the energy of a sensor node is consumed 
during transmission (Kay & Friedmann, 2004; Kingsly & Chandra, 2013). It has 
been revealed by Akyildiz & Vuran (2010) that the energy cost of transmitting 
a 1 kb packet over a distance of 100 m is approximately equal to executing 
about 3 million instructions by a typical microprocessor. It is on this premise 
that it becomes crucial to develop and optimize algorithms that will minimize 
energy consumed during the communication stage in a WSN (Heinzelman, 
Chandrakasan, & Balakrishnan, 2002). 

Several studies have suggested different approaches of minimizing the energy 
consumption of WSNs; one of such is to adjust the transmission power to the 
minimum received power level (Alakesh, & Umapathi, 2014). Another is to employ 
duty cycling, that is, switching of nodes between different modes (active, sleep 
and idle) of operation (Lohith & Bharatesh, 2015). A well known approach is the 
design and optimization of routing schemes (Heinzelman et al., 2002) for efficient 
transmission within and out of the network. To this end, Low Energy Adaptive 



ISSN: 2180-3811         Vol. 9     No. 2    July - December 2018

A Cluster Head Assisted Routing (CHAR) Scheme for Improved Energy Load Balancing in Wireless 
Sensor Networks

79

Clustering Hierarchy (LEACH) protocol (Heinzelman et al., 2002) and its later 
versions (Xiaoping, Hong & Gang, 2010; Hari, Ramachandran, & Johnson, 2013) are 
popular for an improved network lifetime and better throughput (Ossama, Marwan, 
& Srinivasan, 2006). Despite this fit, these protocols place a huge responsibility on 
the CHs, leading to faster energy depletion of such heads. It is important therefore 
to reduce the overhead on the CH and ensure a better spread of energy load in the 
network, since the death of a few nodes can cause a significant topological change 
(Alakesh, & Umapathi, 2014).

2.0 MATERIALS AND METHODS

This study presents a design and simulation of an optimized hierarchical-routing 
scheme, which aims to optimize the energy resource of a WSN by ensuring a 
more even energy consumption profile of sensor nodes. The overhead on the CH 
is reduced by implementing the role of an Assisting Cluster Head (ACH) and 
minimizing unnecessary CH reelections. The ACH shares the workload of the CH; 
it coordinates the cluster and also aggregates data within the cluster leaving the 
CH the sole responsibility of inter-cluster transmission of aggregated data. Unlike 
the primary node proposed in Sandra, Jaime, Miguel, & Jose (2011), the choice 
of an ACH is not based only on proximity to the CH; a decision cost function is 
formulated to consider both proximity and residual energy in selecting the principal 
members of a cluster. In addition, an expectedly swifter next hop decision approach 
is employed; which should minimize the overhead incurred when the network gets 
larger. An algorithm was developed, modeled and a comparative examination of 
its performance was carried out in Matlab environment. In a measure to test the 
validity of the results, the algorithm was deployed in a quasi-real WSN. An ESP8266 
Wi-Fi module was conditioned with an external battery and the C code equivalent 
of the algorithm to form the wireless sensor node.

2.1  Network Model

The network is comprised of one base station (BS) located outside the monitored 
area. It is assumed that the monitored area is not readily accessible; hence the 
location of the BS and a fixed energy budget for all the sensor nodes except the 
BS. The BS has an unlimited energy budget and can handle all data captured 
within the network. The model assumptions are as follows:
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 All sensor nodes apart from the BS begin with the same initial energy and 
operate on a fixed energy budget.

 All sensor nodes, including the BS are stationary.
 All sensor nodes can take any of the three possible roles i.e. CH, ACH or 

normal sensing role.
 All sensor nodes are able to communicate effectively with any other node 

in the network

2.2  Radio Model And Energy Consumption

The first order radio model, shown in Figure 1, was adopted to compute the 
energy dissipation in the network.
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Figure 1. Simplified Energy Model (Kay et al., 2005) 

 
The energy consumption of a transmitter-receiver pair, transmitting a 𝑘𝑘  bit data stream 
through a distance 𝑑𝑑 can be modeled (Kay et al., 2005) as in Equation (1) below:- 
 
 𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑡𝑡𝑡𝑡(𝑘𝑘, 𝑑𝑑) + 𝐸𝐸𝑟𝑟𝑡𝑡(𝑘𝑘)       (1) 
 
where, 𝐸𝐸𝑡𝑡𝑡𝑡 and 𝐸𝐸𝑟𝑟𝑡𝑡are the energy consumed at the transmitter and receiver respectively. 𝐸𝐸𝑟𝑟𝑡𝑡  
is a function of the receiver circuitry and the packet length received; whereas, 𝐸𝐸𝑡𝑡𝑡𝑡 can be 
broken into two parts; energy consumed by the transmitter circuitry in handling 𝑘𝑘 bit data; 
and energy consumed by the power amplifier to send 𝑘𝑘 bit packet through a distance 𝑑𝑑. The 
transmitter and receiver energies in Equation (1) can therefore be expressed as (Kay et al., 
2005) in Equations (2) and (3): 
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Figure 1. Simplified Energy Model (Kay et al., 2005)

The energy consumption of a transmitter-receiver pair, transmitting a k bit data 
stream through a distance d can be modeled (Kay et al., 2005) as in Equation 
(1) below:-

Ec = Etx (k, d) + Erx (k)                                                                                                    (1)

where, Etx and Erx are the energy consumed at the transmitter and receiver 
respectively. Erx is a function of the receiver circuitry and the packet length 
received; whereas, Etx can be broken into two parts; energy consumed by 
the transmitter circuitry in handling k bit data; and energy consumed by the 
power amplifier to send k bit packet through a distance d. The transmitter and 
receiver energies in Equation (1) can therefore be expressed as (Kay et al., 2005) 
in Equations (2) and (3):

Etx (k, d) = Etc.k + eamp.k.dn                                                                                             (2)

Erx (k)=Erc.k                                                                                                              (3)
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where, eamp is the energy dissipated per bit per unit distance by the power 
amplifier; Etc and Erc represent energy dissipated per bit by the transmitter and 
receiver circuitry, respectively. The value of n depends on the propagation 
mode employed.

2.2.1  Propagation Models

Intra-cluster transmissions between cluster members and the CHs occur 
at relatively short distances; hence it is fair to assume a direct line of sight 
communication and a free-space propagation (FP) model; where n in Equation 
(2) is set equal to 2. Transmissions between the CHs and BS are relatively long 
distance transmission; thus a multipath transmission (MP) model is assumed 
and n is set equal to 4. Therefore, Equation (2) becomes an expression in 
Equation (4): 
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where, 𝑒𝑒𝑚𝑚𝑚𝑚 and 𝑒𝑒𝑓𝑓𝑓𝑓 are the amplifier parammeters at free-space and multpath propagation 
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Zouhair, Sadouq, & Mohamed (2014) are 0.0013𝑝𝑝𝑝𝑝/𝑏𝑏𝑏𝑏𝑏𝑏/𝑚𝑚4 and 10𝑝𝑝𝑝𝑝/𝑏𝑏𝑏𝑏𝑏𝑏/𝑚𝑚2  
respectively. 
 
2.3  Proposed Protocol 
 
For the purpose of this study, a sensed area of (𝑋𝑋 × 𝑌𝑌) 𝑚𝑚2 with 𝑁𝑁 nodes is deployed. The 
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2.3.1  Cluster Grouping 
 
The cluster sizes are determined at the beginning of the simulation. Based on the defined 
cluster size, the monitored space is divided by the cluster size to obtain the number of 
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2.3.2  Cluster Head Election 
 

                            (4)

where, emp and efs are the amplifier parammeters at free-space and multpath 
propagation modes respectively. Typical values of emp and efs as used in 
Heinzelman, et al. (2002) and Zouhair, Sadouq, & Mohamed (2014) are  
0.0013pJ/bit/m4  and 10pJ/bit/m2   respectively.

2.3  Proposed Protocol

For the purpose of this study, a sensed area of (X × Y) m2 with N nodes is 
deployed. The network is composed of a BS located outside the sensed area. 
It is assumed that the sensor nodes are operating on a fixed energy budget, 
but the BS has unlimited energy and can handle all data captured within the 
network as well as play the main coordinating role in the network. Each sensor 
in the network can be uniquely located by its x and y coordinates. In the model 
design and analyses, the sensor nodes may be deployed randomly or uniformly.

2.3.1  Cluster Grouping

The cluster sizes are determined at the beginning of the simulation. Based 
on the defined cluster size, the monitored space is divided by the cluster size 
to obtain the number of clusters. In this manner, all sensors that fall within a 
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cluster space are grouped to form members of the cluster. In Figure 2, XY is the 
monitored area and Cij are the cluster spaces such that i,j are x,y coordinates that 
respectively defining the cluster location on the cluster grid. In this manner, all 
sensor nodes (nij) whose i and j values are such that: i ≤ i1 and j ≤ j1 belong to 
cluster C11. Similarly, members of C22 are defined as all sensor nodes whose i 
and j values are such that: i1 < i ≤ i2  and j1 < j ≤ j2.
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2.3.2  Cluster Head Election

This study employs a predictive approach to CH election. The algorithm is 
designed to first estimate the cost. The node with the smallest cost estimate 
is favoured to become the CH. It is should be pointed out here that the choice 
of a CH based on predicted energy expenditure alone may be catastrophic, as 
cluster members with lower residual energy may be elected as CHs leading to 
a shorter time before first node death (FND). It therefore becomes imperative to 
consider the residual energies of nodes in the choice of a CH.

A cost function (ƒ) that weighs both the energy cost (EBS) of transmitting 
collated data to the BS and residual energy of a node (ERS) before electing a 
CH was developed. The cost function (ƒch) for electing the CH can therefore be 
formulated using an expression in Equation (5) below:-

ƒch = γ1 EBS + γ2 ESP                                                                                                        (5)

In Equation (5), ESP is the energy spent by the node; which is obtained by 
subtracting the residual energy from the initial energy, γ1 and γ2 are constants 
to be optimised for the best results. EBS can be calculated from Equation (2); 
assuming a multipath model for inter-cluster transmission using Equation (6) 
below:-
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EBS = Etc Ktt + emp kdi
4                                                                                                (6)

where, Ktt  and di are data collated within the cluster and distance of the node 
from the BS respectively. The di  can be obtained by making use of an expression 
in Equation (7) below:-
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results. 𝐸𝐸𝐵𝐵𝐵𝐵  can be calculated from Equation (2); assuming a multipath model for inter-
cluster transmission using Equation (6) below:- 
 
𝐸𝐸𝐵𝐵𝐵𝐵 = 𝐸𝐸𝑡𝑡𝑐𝑐𝐾𝐾𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑚𝑚𝑚𝑚𝑘𝑘𝑑𝑑𝑖𝑖

4 (6) 
 
where, 𝐾𝐾𝑡𝑡𝑡𝑡  and 𝑑𝑑𝑖𝑖 are data collated within the cluster and distance of the node from the BS 
respectively. The 𝑑𝑑𝑖𝑖  can be obtained by making use of an expression in Equation (7) below:- 
 
𝑑𝑑𝑖𝑖 = √(𝑦𝑦𝑏𝑏𝑏𝑏 − 𝑦𝑦𝑛𝑛)2 + (𝑥𝑥𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑛𝑛)2 (7) 
 
Equation (5) is evaluated for each node in the cluster and the node with the least cost function 
becomes the CH for that round of data communication in the network. 
 
2.3.3  Assisting Cluster Head (ACH) Election 
 
The ACH is introduced to cushion the load burden on the CH. The work of the ACH is to 
collate data within the cluster and hop it to the CH for transmission to the BS. Since all the 
cluster members will be transmitting to the ACH, it must be chosen such that it satisfies the 
following criteria; it places the least energy burden (energy depletion) on the cluster; and 
nodes with higher energy residual are more favoured to play the role of ACH. 
 
In order to satisfy the stated criteria, we must foremost estimate the energy burden imposed 
on a cluster (𝐸𝐸𝑡𝑡𝑡𝑡𝑐𝑐ℎ) in a communication round if a particular node in the cluster is to be 
selected as the ACH. A cluster is imagined as a set (𝑀𝑀) of 𝑛𝑛 identical members, hence 𝑀𝑀 =
{𝑚𝑚𝑖𝑖}, 𝑖𝑖 = 1,2, … , 𝑛𝑛. For every node (𝑚𝑚𝑖𝑖), there is an associated distance (𝑑𝑑𝑖𝑖) to the ACH. 
Since the cluster members are relatively close to each other, it is reasonable to assume a free-
space propagation model. As such, if a cluster member 𝑚𝑚𝑖𝑖 is selected as the ACH, the energy 
spent by the rest of the cluster members in transmitting to 𝑚𝑚𝑖𝑖  (𝐸𝐸𝑎𝑎𝑐𝑐ℎ) is a simple sum which 
can be expressed as in Equation (8) as follows:- 
 
𝐸𝐸𝑎𝑎𝑐𝑐ℎ = (𝐸𝐸𝑡𝑡𝑐𝑐𝑘𝑘1 + 𝑒𝑒𝑓𝑓𝑏𝑏𝑘𝑘1𝑑𝑑1

2) + (𝐸𝐸𝑡𝑡𝑐𝑐𝑘𝑘2 + 𝑒𝑒𝑓𝑓𝑏𝑏𝑘𝑘2𝑑𝑑2
2) + ⋯ + (𝐸𝐸𝑡𝑡𝑐𝑐𝑘𝑘𝑛𝑛−2 + 𝑒𝑒𝑓𝑓𝑏𝑏𝑘𝑘𝑛𝑛−2𝑑𝑑𝑛𝑛−2

2 ) 
         = (𝐸𝐸𝑡𝑡𝑐𝑐𝑘𝑘1 + 𝐸𝐸𝑡𝑡𝑐𝑐𝑘𝑘2 + ⋯ 𝐸𝐸𝑡𝑡𝑐𝑐𝑘𝑘𝑛𝑛−2) + (𝑒𝑒𝑓𝑓𝑏𝑏𝑘𝑘1𝑑𝑑1

2 + 𝑒𝑒𝑓𝑓𝑏𝑏𝑘𝑘2𝑑𝑑2
2 + ⋯ 𝑒𝑒𝑓𝑓𝑏𝑏𝑘𝑘𝑛𝑛−2𝑑𝑑𝑛𝑛−2

2 ) 
    = 𝐸𝐸𝑡𝑡𝑐𝑐(𝑘𝑘1 + 𝑘𝑘2 + ⋯ 𝑘𝑘𝑛𝑛−2) + 𝑒𝑒𝑓𝑓𝑏𝑏(𝑘𝑘1𝑑𝑑1

2 + 𝑘𝑘2𝑑𝑑2
2 + ⋯ 𝑘𝑘𝑛𝑛−2𝑑𝑑𝑛𝑛−2

2 )                (8) 

                                                                               (7)

Equation (5) is evaluated for each node in the cluster and the node with the 
least cost function becomes the CH for that round of data communication in 
the network.

2.3.3  Assisting Cluster Head (ACH) Election

The ACH is introduced to cushion the load burden on the CH. The work of the 
ACH is to collate data within the cluster and hop it to the CH for transmission 
to the BS. Since all the cluster members will be transmitting to the ACH, it 
must be chosen such that it satisfies the following criteria; it places the least 
energy burden (energy depletion) on the cluster; and nodes with higher energy 
residual are more favoured to play the role of ACH.

In order to satisfy the stated criteria, we must foremost estimate the energy 
burden imposed on a cluster (Ettch) in a communication round if a particular 
node in the cluster is to be selected as the ACH. A cluster is imagined as a set (M) 
of n identical members, hence M={mi }, i = 1,2,…,n. For every node (mi), there is 
an associated distance (di) to the ACH. Since the cluster members are relatively 
close to each other, it is reasonable to assume a free-space propagation model. 
As such, if a cluster member mi is selected as the ACH, the energy spent by the 
rest of the cluster members in transmitting to mi (Each) is a simple sum which can 
be expressed as in Equation (8) as follows:-

Each = (Etc k1 + efs k1 d1
2 )+(Etc k2 + efs k2 d2

2) + ··· + (Etc kn-2 + efs kn-2 dn-2
2)

      = (Etc k1 + Etc k2 + ···Etc kn-2) + (efs k1 d1
2 + efs k2 d2

2 + ···efs kn-2 dn-2
2)

      =Etc (k1 + k2 + ···kn-2) + efs (k1 d1
2 + k2 d2

2 + ···kn-2 dn-2
2)                              (8)

We can recast Equation (8) in a compact form as an expression in Equation (9);
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We can recast Equation (8) in a compact form as an expression in Equation (9); 
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2)𝑛𝑛−2

𝑖𝑖=1 )                               (9)   
 
If all the nodes transmit the same size of data per round, hence the following expression 
applies, as in Equation (10) below:- 
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2𝑛𝑛−2
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At the end of a round of data collation, if all the data transmitted by the member nodes is 
successfully received by the ACH, the amount of data collated by the ACH can be expressed 
as in Equation (11) below:-  
 
𝛫𝛫𝑡𝑡𝑡𝑡 = ∑ 𝑘𝑘𝑖𝑖 = (𝑛𝑛 − 2)𝑘𝑘𝑛𝑛−2

𝑖𝑖=1                   (11) 
 
This must be transmitted to the CH at an energy cost 𝐸𝐸𝑎𝑎ℎ similarly expressed as in Equation 
(12) below:- 
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2 )                (12) 
 
where, 𝑑𝑑𝑎𝑎ℎ is the distance between the CH and ACH. Combining Equations (10) and (12) 
(i.e. the cost of collating data in the cluster and handing over to the CH), we obtained a fair 
estimate of the total energy burden imposed on the cluster (𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴) by the choice of any node 
say, 𝑚𝑚𝑖𝑖 as the ACH in Equation (13) below:- 
 
𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑘𝑘 ((𝑛𝑛 − 2)𝐸𝐸𝑡𝑡𝑎𝑎 + 𝑒𝑒𝑓𝑓𝑓𝑓 ∑ 𝑑𝑑𝑖𝑖

2𝑛𝑛−2
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2 )                 (13) 
 
As defined in Equation (5), the cost function for the choice of an ACH can now be written 
as in Equation (14) as follows:- 
 
ƒ 𝑎𝑎𝑎𝑎ℎ = 𝛾𝛾3𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛾𝛾4𝐸𝐸𝑆𝑆𝑆𝑆                (14) 
 
where, 𝐸𝐸𝑆𝑆𝑆𝑆 is defined on per node bases. It is a measure of the residual energy in the node 
been considered for this role. 
 
 
 
 
 
3.0 SIMULATIONS AND TESTBED DEPLOYMENT 

 
3.1 Operation Of Char Scheme 

                              (9)  
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If all the nodes transmit the same size of data per round, hence the following 
expression applies, as in Equation (10) below:-
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At the end of a round of data collation, if all the data transmitted by the member nodes is 
successfully received by the ACH, the amount of data collated by the ACH can be expressed 
as in Equation (11) below:-  
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where, 𝑑𝑑𝑎𝑎ℎ is the distance between the CH and ACH. Combining Equations (10) and (12) 
(i.e. the cost of collating data in the cluster and handing over to the CH), we obtained a fair 
estimate of the total energy burden imposed on the cluster (𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴) by the choice of any node 
say, 𝑚𝑚𝑖𝑖 as the ACH in Equation (13) below:- 
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As defined in Equation (5), the cost function for the choice of an ACH can now be written 
as in Equation (14) as follows:- 
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been considered for this role. 
 
 
 
 
 
3.0 SIMULATIONS AND TESTBED DEPLOYMENT 

 
3.1 Operation Of Char Scheme 

                                                                   (10)

At the end of a round of data collation, if all the data transmitted by the member 
nodes is successfully received by the ACH, the amount of data collated by the 
ACH can be expressed as in Equation (11) below:- 
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3.0 SIMULATIONS AND TESTBED DEPLOYMENT 

 
3.1 Operation Of Char Scheme 

                                                  (11)

This must be transmitted to the CH at an energy cost E_ch  similarly expressed 
as in Equation (12) below:-
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where, ESP is defined on per node bases. It is a measure of the residual energy 
in the node been considered for this role.
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3.0 SIMULATIONS AND TESTBED DEPLOYMENT

3.1 Operation Of Char Scheme

The Cluster Head Assisted Routing (CHAR) scheme is divided into rounds. 
Each round as depicted in Figure 3 begins with a setup phase during which 
the nodes are grouped according to their location coordinates in the monitored 
space. CHs are selected by the BS as depicted in Figure 4 and ACHs are 
similarly selected. Intra cluster transmission begins with ACH receiving and 
aggregating data within the cluster, this phase ends with the CH transmitting 
to the BS. The CH retains its role to the next round if its residual energy is above 
a set threshold of 0.8 times the average residual energy of the cluster.
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Figure 4. Cluster Head Election Steps 

 
 3.2 Simulations 
 
The proposed algorithm was implemented in two environments. The first set of simulations 
was carried out in a Matlab environment; while the second set of simulations was carried out 
in a quasi-real environment using an improvised Test-Bed (Adetona, Ahemba, & Imoize, 
2018) in order to validate its performance in Matlab. To allow for comparative analyses of 
the CHAR algorithm and an existing routing protocol, LEACH (Heinzelman, et al., 2002) 
was used. To examine the individual impact of its features on the energy profile of a network, 
simulations were done in an ordered manner as follows: Implement LEACH, modify LEACH 
by introducing the ACH, modify LEACH with the new cost function and implement CHAR 
scheme. 
 
3.2.1  Simulations in Matlab Environment 
 
Simulations in Matlab were done using 100 sensor nodes uniformly distributed in a 100 𝑚𝑚2 
space. The multipath radio model and other radio network parameters were adopted from 
Zouhair, et al., (2014); and presented in Table 1. 
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The proposed algorithm was implemented in two environments. The first 
set of simulations was carried out in a Matlab environment; while the second 
set of simulations was carried out in a quasi-real environment using an 
improvised Test-Bed (Adetona, Ahemba, & Imoize, 2018) in order to validate 
its performance in Matlab. To allow for comparative analyses of the CHAR 
algorithm and an existing routing protocol, LEACH (Heinzelman, et al., 2002) 
was used. To examine the individual impact of its features on the energy 
profile of a network, simulations were done in an ordered manner as follows: 
Implement LEACH, modify LEACH by introducing the ACH, modify LEACH 
with the new cost function and implement CHAR scheme.

3.2.1  Simulations in Matlab Environment

Simulations in Matlab were done using 100 sensor nodes uniformly distributed 
in a 100 m2 space. The multipath radio model and other radio network 
parameters were adopted from Zouhair, et al., (2014); and presented in Table 1.
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Table 1. Model Parameters
Parameters Values
Network Size 100 m2
Number of Sensor Nodes 100
Initial Energy 0.5J
Packet Size 200bits
Receiver Electronics 50n J/ bit
Transmitter Electronics 50n J /bit
Amplifier Parameter for Free-Space 100p J/bit/m2
Amplifier Parameter for Multipath 0.001p J j/bit/m4
Crossover Distance 87 m

3.2.2  Validation of the proposed Algorithm

The algorithm was implemented in an improvised Test bed (Adetona et al., 2018) 
to further substantiate its performance in terms of power management in Matlab. 
The test bed is comprised of two node types, namely the normal nodes and the 
BS. For the normal nodes, an ESP8266-12 WIFI module is conditioned to simulate 
the action of a sensor node (see Figure 5). The ESP8266-12 is one of the series of 
high performing integrated wireless system on chip designed for space and power 
constrained mobile platforms and with an unsurpassed ability to function as a 
standalone application with minimal space requirements. Unlike regular wireless 
sensor nodes, ESP 8266 WIFI module does not have an inbuilt power supply unit 
or battery hence a 9 V external battery is condition by a voltage regulating circuit 
to power the test node and as well as voltage measuring circuit for monitoring the 
power consumption in the nodes and an operating algorithm. The BS comprised 
of a personal computer running a program (WSN validator) that simulates the 
behavior of the BS (see Figure 6).
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In order to validate the proposed protocol experimentally, the WSN algorithms developed in 
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In order to validate the proposed protocol experimentally, the WSN algorithms 
developed in Heinzelman, et al., (2002) and our proposed CHAR scheme were 
compiled and downloaded into the chip for testing as shown in Figure 6.

4.0 DISCUSSION

For the purpose of comparison and analyses, the CHAR scheme which 
combines the role of an ACH and a derived decision making, cost function 
was implemented alongside LEACH, LEACH with ACH and LEACH with the 
cost function. Table 2 presents First Node Death (FND) and Last Node Death 
(LND) counts for all simulations; whereas Figure 7 depicts a combined plot of 
active nodes versus number of rounds for all implementations. It can be seen 
from the combined plot that, the FND in simulations of LEACH and LEACH 
modified by the cost function occurred at 4250 and 4447 rounds respectively; 
while the FND in LEACH modified with the ACH and the CHAR simulations 
respectively occurred at the 4795 and 4798 rounds representing a 12.8% and 
12.9% increase in the number FND count over LEACH.

In terms of LND which was compared at 10% active node count. It is evident 
from Figure 7 that, LEACH and LEACH modified by the cost function 
performed similarly with no significant difference in the number of rounds, 
both LND counts occurring at 6612 and 6609 rounds. In fact modifying LEACH 
with the cost function alone resulted in an insignificant reduction in the number 
of rounds. This can be viewed as the additional cost of computing the cost 
function without a corresponding benefit in terms of energy conservation. On 
the other hand, introducing the ACH to LEACH improved the LND count by 188 
rounds. When the ACH role is introduced to the cost function simultaneously 
(CHAR), an even greater improvement in the number of rounds was observed. 
The LND count increased by 389 over LEACH-C representing a 6% increase in 
the LND count.
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Table 2. FND and LND Counts for all Simulations
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When the ACH role is introduced to the cost function simultaneously (CHAR), an 
even greater improvement in the number of rounds was observed. The LND count 
increased by 389 over LEACH-C representing a 6% increase in the LND count.

To allow for a visual and comparative overview of the energy consumption 
profile of the proposed algorithm, Figure 8 presents a combined plot of 
mean residual energy versus number of rounds for all implementations. It 
is observed that there was no significant difference in the system’s residual 
energy for all the schemes until the 2500th round. Beyond this, CHAR begins to 
distinguish as a better energy conserving algorithm. The mean residual energy 
plot for CHAR begins to appreciate against the other schemes until it attains a 
steady difference of about 0.023J. It is noted that CHAR scheme was the only 
simulation that got to the 7000th round. 

Figures 9 through 12 depict the residual energy density (RED) of various 
schemes at the end of the simulation; whereas, Table 3 shows RED at the end 
of the simulation. This is a measure of how much energy was left unused/
unutilized at the end of the simulation. The performance of the pair LEACH, 
LEACH+f and CHAR, LEACH+ACH were fairly similar. Comparing CHAR 
and LEACH, it can be seen from the Table 3 that, at the end of the simulation, 
11, 5, 2, and 82 nodes in LEACH implementation had 0.1 J, 0,07 J 0.09 J and 0.01 
J remaining respectively. This presents a total loss of 2.45 J whereas for CHAR, 
it can be seen from the table that 5, 2, and 93 nodes had 0.06 J, 0.05 J and 0.01 J 
respectively; representing a total energy residue of 1.33 J.
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Table 3. RED at the end of simulation 

Routing 
Scheme 

Residual Energy per 
Node(j) 

(Maximum value per 
bar) 

Number of 
Nodes per bar 

 

Residual 
Estimate (J) 

LEACH 0.1 11 1.1 
0.07 5 0.35 
0.09 2 0.18 
0.01 82 0.82 

Total 
  

2.45 
LEACH+ACH 0.1 7 0.7 

0.09 6 0.54 
0.01 87 0.87 

Total 
  

2.11 
LEACH+f 0.1 11 1.1 

0.09 2 0.18 
0.01 87 0.87 

Total 
  

2.15 
CHAR 0.06 5 0.3 

0.05 2 0.1 
0.01 93 0.93 

Total 
  

1.33 
 

The results obtained from the ESP8266ES Wi-Fi based test bed are presented in Figures 13 
and 14. The rate of battery depletion when normal LEACH protocol, (Adetona, Ahemba, & 
Imoize, 2018) where a head is selected based only on highest residual energy, was running 
is presented in Figure 13; while the rate of battery depletion when our proposed CHAR 
algorithm, where a head is selected based on two parameters: highest residual energy and 
cost of transmission to the base station, was running is presented in Figure 14.  
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For the purpose of evaluating the numerical value of the performance of the CHAR and 
LEACH routing protocols in terms of energy conservation, Figure 15 presents the mean 
values of battery voltage for all batteries against system life for the two routing protocols. 
Figure 15 reveals that the rate at which battery depleted in normal LEACH and CHAR 
routing protocols are 50% and 10% respectively. This indicates that batteries depleted faster 
in normal LEACH than CHAR routing protocols. Consequently, there is an improvement in 
energy conservation in the CHAR scheme over normal LEACH protocol. It can also be 
observed that CHAR produced a more even and gradual battery depletion rate leading to a 
longer network life of 20 rounds more than normal LEACH. 
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predictive CH and ACH selection technique based on a derived cost function is utilized. The 
cost function for CH election is a weighted combination of the residual energy of a node, and 
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For the purpose of evaluating the numerical value of the performance of the 
CHAR and LEACH routing protocols in terms of energy conservation, Figure 
15 presents the mean values of battery voltage for all batteries against system 
life for the two routing protocols. Figure 15 reveals that the rate at which 
battery depleted in normal LEACH and CHAR routing protocols are 50% 
and 10% respectively. This indicates that batteries depleted faster in normal 
LEACH than CHAR routing protocols. Consequently, there is an improvement 
in energy conservation in the CHAR scheme over normal LEACH protocol. It 
can also be observed that CHAR produced a more even and gradual battery 
depletion rate leading to a longer network life of 20 rounds more than normal 
LEACH.
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5.0  CONCLUSIONS

In this study, a CHAR scheme has been designed and a comparative analysis 
carried out. The objective of this algorithm is to overcome the inherent problem 
of over-burdened CHs in a hierarchical/clustered network structure; hence 
ACHs are proposed. The role of the proposed ACH is to share the high energy 
burden on the CH by receiving and aggregating data within the cluster, 
while the CH is left with the role of transmitting aggregated data to the BS. A 
predictive CH and ACH selection technique based on a derived cost function 
is utilized. The cost function for CH election is a weighted combination of the 
residual energy of a node, and the energy cost of transmitting to the BS. The 
node with the least cost is favored to be elected as the CH.

Simulation results show that an improved energy consumption profile of a 
WSN characterized by a superior FND count, a more gentle energy depletion 
curve and better energy utilization can be achieved by fine-tuning the 
CH choice process and reducing the burden of the CHs. For an even better 
performance, future study works may focus on performance evaluation to 
define the optimum values of the weighting parameters in quations (5) and 
(14) for improved decision making.
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