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Abstract— The demand for EN8 mild steel 
in the industry is high due to its integral 
mechanical properties. However, 
conventional machining of EN8 mild steel is 
a challenging task. In this research work, 
prediction and optimization of EN8 mild steel 
Material Removal Rate (MRR) and Surface 
Roughness (Ra) using Response Surface 
Methodology (R.S. M) were investigated. 
The dimension of the EN8 mild steel 
material was 0.12 m diameter and 0.08 m in 
length. The turning operation of the ENS 
mild steel was carried out using an M42 HSS 
single-point cutting tool. To minimize any 
form of error, the machining operation was 
done in a dry environment. A TR 100 
Surface Roughness Tester was used to 
carry out the surface roughness 
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measurement of the EN8 mild steel in a 
transverse direction. This process was 
repeated three times, and the average value 
of three measurements recorded. The data 
generated were analyzed using Response 
Surface Methodology. The results obtained 
revealed an R2 value of 0.9985 and 0.9978 
for Material Removal Rate (MRR) and 
Surface Roughness (Ra), respectively. 
Besides, it was observed that the feed rate, 
spindle speed, and depth of cut had a 
significant influence on the material removal 
rate. Nevertheless, unlike the other 
parameters evaluated, it was only feed rate 
that had a significant influence on surface 
roughness. The results obtained from the 
numerical optimization solution revealed 
that optimum machining setting of spindle 
speed of 220 rpm, the feed rate of 140 x 10-

6 m/min and depth of cut of 1.5 x 10-3 m 
would result in a turning process with an 
optimum material removal rate of 12598.5 
mm3/min and surface roughness of 0.87785 
µm, and with a composite desirability value 
of 98.9%. 

 
 

I. Introduction 
EN8 mild steels are versatile 

material in the manufacturing 
industry. The high demand for 
EN8 mild steel in the industry is 
a result of its good mechanical 
properties such as; high strength, 

toughness, ductility, and its 
ability to retains its high strength 
at high temperatures. Several 
machine components, such as 
bearings, cams, gears, shafts, 
etc., are produced from EN8 
mild steel. However, before 
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these machine elements are 
created, machine operation such 
as hard turning is required. The 
hard-turning machine operation 
provides numerous benefits, 
unlike grinding that had 
remained the standard finishing 
process for hardened steel 
surfaces over the years. Also, the 
high mechanical and thermal 
load that results from machining 
operations creates a severe 
environment for the tools to 
operate. Besides, during hard 
turning operations, 
complications and mutual 
interactions are formed between 
the tool and workpiece at the 
point of surface contact [1]-[6]. 
Also, significant cutting loads 
and extreme tribological 
conditions are developed 
because of severe dry friction 
and high surface contact 
interface temperatures between 
the workpiece and tool chip 
resulting in accelerated tool 
wear and eventual breakage of 
the tool. Thus, there is an 
alteration of the precisions on 
the surface roughness of the 
finished workpiece dimensions. 

Several methods to curb 
several researchers had 

proposed the problem of 
Material Removal Rate (MRR) 
and Surface Roughness (Ra) in 
the past and their findings were 
aimed at analyzing the effect of 
cutting and turning conditions 
on the tool performance and 
optimization. In this line, Adarsh 
et al. [7] analyzed the optimum 
cutting conditions of EN8 alloy 
material using spindle speed, 
feed, and depth of cut as 
evaluated parameters. The 
performance of Ra was 
evaluated using Multiple 
Regression Analysis (MRA) and 
ANOVA Analysis (A.A.). The 
results of their findings depicted 
feed rate as the only significant 
factor affecting Ra. Barik and 
Mandal [8] in their strive to find 
a solution to Ra in turning of 
EN31 alloy decided to study the 
characteristics of the material as 
mentioned above using speed, 
feed and depth of cut as 
evaluated parameters. Genetic 
Algorithm (G.A.) was used for 
the optimization of the 
parameters discussed above. The 
results obtained by them 
suggested that an increase in 
feed rate led to a 
correspondingly increase in Ra. 
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Erameh et al. [9] investigated 
Ra and Tool Wear Rate (TWR) 
in hard turning of EN8 mild steel. 
They used High-Speed Steel 
(HSS) cutting tool, and spindle 
speed, feed rate, and depth of cut 
were evaluated as determining 
parameters. The optimization 
was done using Response 
Surface Methodology (R.S. M). 
The outcome of the results 
obtained from their research 
work revealed feed rate as the 
only influencing parameters on 
Ra. Moreover, Nitin et al. [10] 
used ANOVA Analysis (A.A.) 
and combined signal to noise 
ratio to predict the Ra of turning 
AISI 410 steel using TiN coated 
P20 and P30 cutting tool. The 
parameters evaluated in their 
research work include; inserted 
radius, depth of cut, feed rate, 
and cutting speed. The results of 
their research work showed that 
insert radius and feed rate have a 
significant effect on Ra [11]. 
Their research work was further 
optimized using spindle speed, 
feed rate, and depth of cut in dry 
turning of mild steel HSS cutting 
tool. ANOVA Analysis, Signal 
to Noise Ratio, and Taguchi 
Methods were used to analyze 

and evaluate the Ra value. Their 
conclusion also goes in line with 
the results of the researchers 
mentioned above, and this was 
because the feed rate once again 
was the primary factor recorded. 

Similarly, Samir et al. [12] 
investigated the Ra of mild steel 
using the HSS cutting tool. The 
parameters analyzed and 
evaluated include; feed rate, 
speed and depth of cut, and the 
cutting force. The approach 
adopted by them involved the 
full factorial design, and two 
repetitions were used to find the 
optimal solution. The outcome 
of the results obtained in their 
research work showed that feed 
rate and spindle speed were the 
influencing factors that were 
required to increase the Ra of 
mild steel. To find the optimal 
Ra of Al6351-T6, an 
experimental investigation was 
conducted by Rodrigues et al.  
[13]. The model used by this 
five-person team was predicted 
and validated using the 
regression technique and 
Taguchi Technique.  Cutting 
speed, feed rate, and depth of cut 
were considered for the turning 
process and equally evaluated. 
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They conclude from their 
findings that cutting speed was 
found to be highest, and this 
agreed with the research work of 
Das et al. [14]. Nevertheless, this 
present research work is focused 
on the prediction and 
optimization of EN8 mild steel 
material removal rate and 
surface roughness using 
Response Surface Methodology. 

 
II. Material And Methods 
A. Material 

The EN8 mild steel material 
was bought from the local 
market in Benin City, Nigeria. 
The mechanical properties of the 
EN 8 mild steel were determined 
at Petroleum Training Institute, 
Effurun, Delta State, Nigeria. 
Table 1 shows the experimental 
condition of EN8 mild steel. 
Table 2 shows the mechanical 
properties of the EN8 Mild Steel. 
The turning operation was 
carried out using the M42 HSS 
single-point cutting tool. The 
turned samples are shown in 
Figure 1.  An ENC lathe 
machine with spindle speed, as 
shown in Figure 2, ranging from 
100 rpm to 3000 rpm, was used 
for the experiment. A 6.5 hp 

electric motor drove the 
machining center, and the 
experiment was carried out 
under a dry machining 
environment. TR 100 Surface 
Roughness Tester equipment 
shown in Figure 3 was used for 
the measurement of the Ra of the 
machined EN8 mild steel 
material in the transverse 
direction. This process was 
repeated three times, and the 
average of three measurement 
values recorded. 
 

Table 1: Experimental Condition of 
the EN8 Mild Steel 

S/N Parameters Dimension 
1 Length 80.00 
2 Diameter 120.00 

 
Table 2: Mechanical Properties of the 

EN8 Mild Steel 
S/N Parameters Determined 

Value 
1 Hardness 

value 
235 Brinell 

2 Elongation 16.87% 
3 Yield Stress 464.95N/mm2 
4 Maximum 

Stress 
845.85N/mm2 

 

 
Figure 1: Turned Samples 
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Figure 2: CNC Lathe Machine 

 

 
Figure 3: TR100 Ra Tester 

 
B. Methods 

In this present research work, 
three main cutting parameters 
(i.e., spindle speed (A) in 
rev/min, feed rate (B), in 
mm/min, and depth of cut (C), in 
mm) were selected and 
considered for the turning 
process. Table 3 shows the 
process variables and their level, 

and Table 4 shows the 
experimental design matrix and 
output response for Material 
Removal Rate (MRR) and 
Surface Roughness (Ra). The 
mathematical model of MRR 
and Ra deduced from this 
research work is shown in (1) 
and (2). 
 
(MRR + 1400) =  +31.67354 +
0.029293 ∗ A − 96.59485 ∗ B +
12.66684 ∗ C + 0.93570 ∗ A ∗ B +
0.14815 ∗ A ∗ C + 156.67356 ∗ B ∗
C − 2.15601E − 004 ∗ A2 +
166.40596 ∗ B2 − 9.32012 ∗ C2    (1) 
 
The final equation for MRR in 
terms of actual factors: 
 
Ra = +0.23546 − 3.62871 ∗ B +
75.55179 ∗ B2                                           (2) 
 

 
Table 3: Process Variables and their Level 

Factor 
 

                  Range 
 

 Low          High 
Spindle speed, A, (rpm) 110 rpm 

(32.85m/min) 
220 rpm 

(62.13m/min) 
Feed rate, B, (mm/min) 0.10 mm/min 0.14 mm/min 
Depth of cut, C, (mm) 0.25 mm 1.50 mm 

 
Table 4: Experimental Design Matrix and Output Response for Material Removal 

Rate (MRR) and Surface Roughness (Ra) 
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III. Result And Discussion 
The quadratic model was 

suggested from the sequential 
model sum of squares [Type II] 
for the two responses, as shown 
in Table 5. The experimental 
data were analyzed with 
ANOVA Analysis (A.A.), and 
this was mainly to identify the 
factor(s) that significantly 
influence the performance 
measure as depicted in Tables 6 
and 7. Transformation was 
carried out because of the ratio 
of the maximum to the minimum, 
which was obtained as 18383.5 
and 1024.69, respectively. A 
transform square root constant 
of 1400 was obtained. The 
ANOVA generated at a 95% 
confidence level for the cutting 

parameters, and the response 
(i.e., MRR) is shown in Table 4. 
The present model F-value was 
obtained as 266.59, and this 
implies that the model is 
significant. Besides, it was 
observed that there is a 0.01% 
chance that the model with an F-
Value could only occur because 
of noise. Also, in this model, it 
was found that factors A, B, C, 
AB, A.C., BC, and C2 are the 
significant model terms for the 
maximization of MRR, and this 
is because of their possessing 
values of "Prob. > F" is less than 
0.050. 

Similarly, the probability 
value associated with the lack of 
fit was 0.0522, thus, not 
significant. It is, therefore, 
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desirable to have an insignificant 
lack of fit. Table 5 shows the 
ANOVA Analysis (A.A.) for 
testing the significance of the 
quadratic model in predicting Ra. 
The model has a P value of 
0.0001, and this suggests that the 

mode is significant, and it was 
observed that B and B2 are the 
model term that has a significant 
influence on Ra. Moreover, the 
probability value associated 
with the lack of fit was 1.0000, 
which is not significant. 

 
Table 5: Sequential Model Sum of Squares [Type II] 

 
 

Table 6: ANOVA for Material Removal Rate (MRR) 

 
 

Table 7: ANOVA for Surface Roughness (Ra) 
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To evaluate how best the 
quadratic model fits the 
observed data and its ability to 
predict MRR and Ra, the 
goodness of fit statistics 
presented in Tables 8 and Table 
9 were generated. From results 
analysis as depicted in Tables 6 
and 7, the R2 value of 0.9985 
and 0.9978 for MRR and Ra 
respectively are more significant 
than 0.9, implying a high 
correlation. Thus, the model can 
explain 99.85% and 99.78% 
variability MRR and Ra. For an 
agreement to be accomplished, 
their adjusted R-squared and 
predicted R-squared should be 
within approximately 0.20. 
Therefore, since this condition is 
meant for their respective values, 
which are in the stipulated range, 
they are in good agreement. An 
adequate precision is a measure 
of the range of a predicted 
response relative to its 
associated error (i.e., signal to 

noise ratio). The desired value 
should be four or more. For 
these two models, it is more than 
four, and this simply showed 
that it could be used to navigate 
the design space. The predicted 
values of MRR and Ra based on 
(1) and (2) are presented in 
Tables 10 and 11, respectively. 
 
Table 8: GOF Statistics for Validating 

Model Significance towards 
Maximizing Material Removal Rate 

Std. Dev. 2.02 R-Squared 0.9958 
Mean 91.75 Adj. R-Squared 0.9921 
C.V. % 2.2 Pred. R-Squared 0.9726 
PRESS 270.4 Adeq. Precision 62.786 

 
Table 9: GOF Statistics for Validating 

Model Significance towards 
Minimizing Surface Roughness 

Std. 
Dev. 

0.046 R-Squared 0.9922 

Mean 1.44 Adj. R-
Squared 

0.9913 

C.V.% 3.17 Pred. R-
Squared 

0.9902 

PRESS 0.044 Adeq. 
Precision 

108.697 
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Table 10: Prediction Result for Material Removal Rate (MRR) 
Standard 

Order 
Actual value Predicted Value Residual Run Order 

1 58.05 56.15 1.9 15 
2 74.34 72.89 1.45 20 
3 65.99 63.94 2.04 4 
4 87.12 87.14 -0.021 16 
5 85.14 84.53 0.61 7 
6 116.86 118.31 -1.45 19 
7 100.87 101.73 -0.86 12 
8 140.65 141.96 -1.31 14 
9 65.84 67.75 -1.91 9 

10 116.7 115.67 1.08 3 
11 79.72 80.93 -1.21 11 
12 107.74 107.37 0.37 10 
13 49.24 52.1593.73 -2.91 1 
14 124.2 122.12 2.08 18 
15 92.674 93.73 -1.08 13 
16 93.71 93.73 -1.-013 17 
17 94.35 93.73 0.63 6 
18 92.15 93.73 -1.58 2 
19 95.29 93.73 1.56 8 
20 94.35 93.73 0.63 5 

 
Table 11: Prediction Result for Surface Roughness (Ra) 

Standard 
Order 

Actual value Predicted Value Residual Run Order 

1 0.9 0.89 0.012 15 
2 0.9 0.89 0.012 20 
3 2.03 2.03 -1.71E-04 4 
4 2.03 2.03 -1.71E-04 16 
5 0.9 0.89 0.61 7 
6 0.9 0.89 -1.45 19 
7 2.03 2.03 -1.71E-04 12 
8 2.03 2.03 -1.71E-04 14 
9 1.41 1.39 0.019 9 
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10 1.41 1.39 0.019 3 
11 0.6 0.62 -0.023 11 
12 2.55 2.54 6.13E-03 10 
13 1.4 1.39 8.93E-03 1 
14 1.41 1.39 0.019 18 
15 1.3 1.39 -0.091 13 
16 1.5 1.39 0.11 17 
17 1.42 1.39 0.029 6 
18 1.4 1.39 8.93E-03 2 
19 1.33 1.39 -0.061 8 
20 1.3 1.39 -0.091 5 

 
The optimization was done 

using the Numerical 
Optimization Approach, and this 
was to ascertain the desirability 
of the overall model. In the 
numerical optimization phase, a 
design expert was used to 
maximize MRR and minimize 
Ra. The optimum values for the 
parameters (spindle speed, feed 
rate, and depth of cut) were 
determined. Table 12 shows the 
constraints used for numerical 

optimization. The outcome of 
the results obtained showed that 
numerical optimization 
produces twelve optimal 
solutions, as presented in Table 
3. Figure 4 shows the three-
dimensional (3D) surface plot of 
MRR as a function of A and B. 
Figure 5 shows the 3D surface 
plot of MRR as a function of A 
and C. 

 

 
Table 12: Constraints for the Numerical optimization 

 



ISSN: 2180-3811         Vol. 11     No. 1    January - June 2020

Journal of Engineering and Technology 

108

 
Figure 4: Three Dimensional (3D) Surface Plot of Material Removal Rate (MRR) 

as a Function of A and B 
 

 
Figure 5: Three Dimensional (3D) Surface Plot of Material Removal Rate (MRR) 

as a Function of A and C 
 

Figure 6 and Figure 7 shows 
the 3D surface plot of MRR as a 
function of B and C. The 3D 
surface plot of MRR as a 
function of B. From the 3 D 
surface plots in Figures 4, 5 and 
6, it was observed that as the 
spindle speed, feed rate and 
depth of cut increase, the rate at 
which unwanted material is 
removed from the surface of the 
rotating workpiece also increase. 
However, only a decrease in 
feed rate brings about a 
reduction in Ra, as shown in 
Figure 7. 

Table 13 shows the numerical 
optimization solution. The 
analysis of the results showed 
that optimum machining setting 
of spindle speed of 220 rpm, the 
feed rate of 0.14 mm/rev and 
depth of cut of 1.5 mm were 
required for a turning process 
that produced an optimum 
(maximized) MRR of 12598.5 
mm3/min and minimum Ra of 
0.87785 µm, and with a 
composite desirability value of 
98.9%. 
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Figure 6: Three-Dimensional(3D) Surface Plot of Material Removal Rate (MRR) 

as a Function of B and C 
 

 
Figure 7: Three Dimensional (3D) Surface Plot of Material Removal Rate (MRR) 

as a Function of B and C 
 

Table 13:  Numerical Optimization Solution 
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IV. Conclusion 
In this research work, the 

prediction and optimization of 
EN8 mild steel Material 
Removal Rate (MRR) and 
Surface Roughness (Ra) using 
Response Surface Methodology 
(R.S. M) were investigated. The 
results obtained revealed that the 
spindle speed, feed rate, and 
depth of cut have a significant 
influence on the MRR. However, 
the only feed rate is found to 
have a significant influence on 
Ra. It was also observed, that 
optimum machining setting of 
spindle speed of 220 rpm, the 
feed rate of 0.14 mm/rev and 
depth of cut of 1.5 mm resulted 
to a turning process with an 
optimum MRR of 12598.5 
mm3/min and minimum Ra of 
0.87785 µm, and with a 
composite desirability value of 
98.9%. 
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