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ABSTRACT 

 

In this study, a seven degree of freedom (DOF) ride model of armored vehicle is employed in 

control system to control the vehicle ride performance especially in body acceleration, body 

pitch acceleration and body roll acceleration due to extreme road profile and disturbance using 

Hybrid control structure optimized by Particle Swarm Optimization (PSO) algorithm. The seven 

DOF ride model parameters are obtained from CARSIM software by selecting heavy vehicle 

High Mobility Multipurpose Wheeled Vehicle (HMMWV) as a benchmark. The performance of 

the hybrid control structure without optimization was compared to the performance of a simple 

PID control structure and passive seven DOF vehicle ride model. Lastly, the performance of 

Hybrid control structure without optimization were compared to the performance of Hybrid 

control structure optimized by PSO algorithm. 

 

KEYWORDS: Seven DOF; HMMWV; PSO; hybrid; skyhook; PID; semi-active suspension; 

passive suspension 

 

1.0 INTRODUCTION 

 

Armored vehicles have been a key weapon in ground battlefield due to its excellent operational 

mobility, tactical offensive and defensive capabilities (Dhir & Sankar, 1997). In addition, the 

armored vehicle is designed to operate on extreme conditions and it has a long firing system 

beneficial in an enemy attack. In recent technologies, armored vehicles are equipped with 

numerous safety systems to enhance the ride and handling performance in various conditions, 

especially during combat. There are two types of the armored vehicle system which is wheeled 

and tracked by the equipped suspension system (Chen, Wang, Qiu & Huang, 2012). For military 

applications, wheeled and tracked armored vehicles are designed to operate in rough road terrain, 

which emphasize the importance of a well-designed suspension system (Uddin, 2009). The 
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function of the suspension system is to maintain the comfort level of soldiers travelling in the 

armored vehicle and to minimize the components damage during maneuver (Dhir & Sankar, 

1997). 

 

As the operating speed of high mobility wheel armored vehicle increases, the vibration induced 

by extreme road condition will also increase (Chen et al., 2012). This will reduce the comfort 

level, stability and ride performance of the armored vehicle. Therefore, it will induce fatigue to 

the soldier members that are travelling in that armored vehicle and damage the components 

installed inside. Besides that, excessive vibration in armored vehicles limits the maximum 

vehicle speed. Hence, the percentage of survivability and operational efficiency in battlefield 

situations will also reduce. One of the methods to enhance the ride performance and safety of the 

high mobility wheeled armored vehicle is by improving the performance of suspension system 

due to the road excitations in the vertical direction of the armored vehicle. The suspension 

system has become one of the major considerations to enhance ride and handling performances 

of armored vehicles according to previous works (Trikande, Jagirdar, & Sujithkumar, 2014). 

 

The main function of the armored vehicle suspension is to isolate the passenger compartment 

from the road vibration to increase the comfort level. According to Liang and Wu (2013), the 

conventional passive suspension accomplishes this by supporting the passenger compartment 

with spring. Theoretically, as the spring rate reduced, the ride quality of sprung mass increased. 

However, this situation will increase the roll moment acting on an armored vehicle during 

cornering. A higher stiffness spring is required to reduce roll moment during cornering. 

Subsequently, a passive suspension results in a conflict between ride comfort and handling of the 

armored vehicles. Another function of a suspension system is to maintain contact between the 

tires and the road surface in order to provide steering stability for good handling performance 

and ensuring the comfort of the passengers (Hayes, Beno, Weeks, Guenin, Mock, Worthington, 

& Lippert, 2015). A good armored vehicle equipped with the best suspension system to provide 

safety and increase the comfort level of the passenger.  According to Bakar, Jamaluddin, 

Rahman, Samin and Hudha (2008), the outstanding performances of ride comfort and operational 

stability can be observed during acceleration and braking condition of armored vehicles. 

 

There are three types of suspensions system generally studied by researchers namely passive, 

active and semi active suspension. The conventional passive suspension system has the ability to 

store energy via a spring during compression stage and dissipates it via a damper during 

extension stage of suspension system (Hudha, Jamaluddin, Samin, & Rahman 2005). In real 

automotive application, the passive suspension system is chosen in order to achieve a certain 

level of road holding, load carrying, ride comfort and performance by tuning fixed parameters 

for spring and damper. Meanwhile, the semi active suspension system functions as passive 

suspension system, but it uses variable damper with varying damping coefficient of suspension 

to cater various disturbance in road condition. The active suspension system has the ability to 

store, dissipate and create new energy within suspension system by the helps of an actuator 

(Bakar et al., 2008). An advanced controllable suspension system such as semi active and active 
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suspension system can produce better performance in order to improve the ride quality of an 

armored vehicles compared to the conventional passive suspension system.  In addition, the 

characteristic of active and semi active suspension systems possess variable parameters thus 

enables the suspension to be highly robust and adjustable depending on the road conditions 

experienced by armored vehicles. 

 

Previously, active suspension system has been studied by other researchers for the tracked and 

wheeled armored vehicle. Weeks, Bresie, Beno & Guenin (1999) proposed a combination of a 

fully controlled electromechanical actuator and passive spring to stabilize vehicle dynamics and 

improve the efficiency of an armored vehicle static weight support. Besides that, Liang et al. 

(2013) developed an active suspension system utilizing a low cost, high performance switch 

reluctance actuator with linear matrix inequality optimization method by using LQG- Based  

Fuzzy Logic controller to enhance the ride performance of armored vehicle. Meanwhile, Hudha 

et al., (2008) focused on 12 DOF vehicle model to study the active suspension with Stability 

Augmentation System (SAS) to improve the dynamic performance of the light armored vehicle 

compared to the passive suspension system. In addition, stochastic optimal preview control was 

studied by Uddin (2009) for the active suspension system of a full vehicle model. 

 

Meanwhile, some researchers such as Hosseinloo, Vahdati and Yap (1993) and Hoogterp, Saxon 

and Schihl  (1993) had developed an on-off semi active suspension system based on 3 DOF 

model for a tracked armored vehicles to improve ride comfort characteristics. Miller and Nobles 

(1988) proposed a semi active control system applied to M551 tank. The semi active control 

provides control effort by an active damper which consumes virtually no power compared to 

fully suspension system by an appropriate control algorithm. The semi active suspension system 

can achieve dynamic control which approaches that of an active suspension. In addition, four-

wheels armored vehicles with semi active suspension system has been designed by modelling a 

High Mobility Multipurpose Wheeled vehicle (HMMWV) to control the response during and 

after firing for improvement of safety and ride performance (Hosseinloo et al., 1993). On the 

other hand, a semi active suspension system for an 8x8 armored vehicles with an On-Off Fuzzy 

Logic control strategy, Skyhook control and continuous Skyhook were proposed by Trikande et 

al. (2014) to reduce the unwanted sprung mass motion such as heave, pitch moment and roll 

moment during maneuvering. 

 

The existing passive suspension system installed on a high mobility wheel armored vehicle is not 

suitable due to its system disadvantages. Armored vehicles are commonly associated with 

extreme terrain condition. Generally, the spring and damper stiffness of passive suspension 

system is constant. Hence, it shows a good ride performance for on-road condition only. 

However for the off-road condition, the suspension system could not vary its damping coefficient 

with the extreme road profile. That is why passive suspension system is not suitable for armored 

vehicles. To overcome this, active or semi active suspension can be proposed. Semi active 

suspension system was proven to produce almost the same outcome and performance achievable 

with the current suspension system (Setiawan, Safarudin & Singh 2009). Besides, semi active 
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suspension system costs less than an active suspension system and easier to install in real life 

application than active suspension system. Therefore, this paper focuses on developing a control 

strategy for semi active suspension system using hybrid control strategy that involves PID 

controller and Skyhook controller. The control structure is developed using seven DOF vehicle 

ride model to study the ride performance of an armored vehicle. Last but not least, the hybrid 

control strategy for semi active suspension system will be optimized by Particle Swarm 

Optimization (PSO) algorithm to enhance the ride performance of armored vehicles. 

 

2.0 VEHICLE MODELLING 

 

In this study, High Mobility Multipurpose Wheeled Vehicle (HMMWV) as shown in Figure 1 is 

used as a reference to study the performance of body acceleration, body pitch acceleration and 

body pitch acceleration due to extreme road profile and disturbance. 

 

   
Figure 1.  High Mobility Multipurpose Wheeled Vehicle (HMMWV) 

 

2.1   Seven DOF Ride Model 

 

The seven degree of freedom (DOF) ride model of High Mobility Multipurpose Wheeled 

Vehicle (HMMWV) is considered in this study. This vehicle model consists of a single sprung 

mass which is vehicle body that is connected to four unsprung masses (wheels) which is front 

right, front left, rear right and rear left located at each corner of the vehicle body. The sprung 

mass is allowed to have pitch and roll motions while the unsprung mass are allowed to bounce 

vertically with respect to unsprung mass (Setiawan et al., 2009). For each wheel, the passive 

suspension system between the sprung and unsprung mass were modeled schematically by a 

spring element and a passive damper. The wheels stiffness were assumed as a linear spring 

without damping (Ahmad, Hudha & Jamaluddin, 2010). This seven DOF ride model of 

HMMWV has been verified in the previous study (Amin et al., 2015).  
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From Figure 2, by utilizing this model, few assumptions were made. The vehicle body of seven 

DOF ride model is considered as a single lumped mass which is defined as sprung mass. While 

the drag force is ignored, the roll centre is aligned at the same level as the pitch centre and both 

are located at the centre of gravity (CG) of the armored vehicle; the suspension system between 

sprung mass and unsprung mass on each four corners of the vehicle are considered as passive 

dampers and spring element with constant damping coefficient and spring stiffness; and lastly, 

pitch and roll angle are neglected due to significantly small value (Ahmad et al., 2010).   

 

 
Figure 2. Seven DOF ride vehicle model 

 

From Figure 2, equation of motion considering forces acting on sprung mass is given as; 

 

ssdrrsrrdrlsrldfrsfrdflsfl ZMFFFFFFFF                       (1)   

 

where, 

sflF = force of spring at left front side 

dflF = force of damper at left front side 

sfrF = force of spring at right front side 

dfrF = force of damper at right front side 

srlF = force of spring at rear left side 

drlF = force of damper at rear left side 

srrF = force of spring at right rear side 

drrF = force of damper at rear right side 
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sM = weight of sprung mass 

 sZ  = acceleration of sprung mass at the CG 

 

Meanwhile, road excitation and maneuvering tend to produce roll motion where the left and right 

suspension is being compressed and decompressed alternately. Same as pitch, the roll moment 

exists due to force produced at the CG of the armored vehicles in x-axis. The roll moment for the 

armored vehicle body is computed based on Newton’s second law which is considering moments 

about axes on CG yields the equations for β and θ:  

 

pfdfrsfrdflsflrdrrsrrdrlsrl IlFFFFlFFFF  )()(                              (2) 

rdrrsrrdfrsfrdrlsrldflsfl I
w

FFFF
w

FFFF 
2

)(
2

)(                     (3) 

where, 

rl  = length between rear unsprung masses and centre of gravity 

fl  = length between front unsprung masses and centre of gravity 

pI   = pitch axis moment of inertia 

  = pitch acceleration at body centre of gravity  

w  = wheel base 

rI  = roll axis moment of inertia 

   = roll acceleration at sprung mass CG 

 

Other four DOF of the model consist of forces acted on each body of wheels that attached to the 

vehicle body. The suspension and tire forces at vertically exerted to the wheel during moving or 

in static condition. All the forces is derived based on basic equation of motion for the unsprung 

masses at each corner of sprung mass can be defined as; 

 

wflzfldflsfltfl ZmFFF                  (4) 

wfrzfrdfrsfrtfr ZmFFF                  (5) 

wrlzrldrlsrltrl ZmFFF                  (6) 

wrrzrrdrrsrrtrr ZmFFF                  (7) 

 

where, 

tflF , tfrF , 
trlF ,

trrF  = tire force (left front, right front, left rear, right rear) 

wflm , wfrm , 
wrlm , wrrm    = unsprung mass (left front, right front, left rear, right rear) 

wflZ , wfrZ , wrlZ , wrrZ    = unsprung mass acceleration (left front, right front, left rear, right rear) 
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2.2  Development of Control Strategy for Semi Active Suspension System  

 

Control structure proposed in this study consists of two separate loops. Another loop controller 

with simple PID control strategy is aimed to stabilize body acceleration. This provides a ride 

control that separates the vehicle body from unwanted pitch and roll moment caused by road 

disturbance. The outer loop utilizes a PID controller to provide a ride control that separates the 

vehicle body from pitch and roll moment caused by road disturbance. Meanwhile, the inner loop 

controller is developed with Skyhook control strategy which provides imaginary damper to the 

vehicle model to improve damping characteristic of the suspension system. The inner loop 

controller will provide the desired damping force for the semi active damper to dissipate any 

unwanted motion. For better compatibility for both controllers a decoupling transformation 

model is positioned between the inner and outer loop controllers. This will ensure that the control 

output from the outer loop to be compatible with seven DOF vehicle ride model. The detailed 

derivation and development of the decoupling transformation module will be discussed in next 

section. The proposed control structure is shown in Figure 3. 

 

 
Figure 3.  Hybrid control structure for semi active suspension system without optimization 
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2.3 Decoupling Transformation and PID Controller 

 

Decoupling transformation is a subsystem that requires further understanding of vehicle dynamic 

system (Ahmad et al., 2010).  The output of outer loop controller is used to stabilize body bounce 

force Fz and moment to stabilize pitch moment, M  and roll moment, M . Meanwhile, the 

output of decoupling transformation model provide the desired actuator forces for inner loop 

controller which will provide the ideal damper force to stabilize the vehicle model.  According to 

Equation (1) to Equation (3) equivalent bounce force for sprung mass Fz, moment for pitch M , 

and moment for roll M  can be defined by; 

 

drrdrldfrdflz FFFFF                  (8) 

RdrrRdrlFdfrFdfl lFlFlFlFM ....                (9) 
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2222
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F
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F

w
FM drrdrldfrdfl             (10) 

drrdrldfrdfl FFFF ,,, in decoupling transformation model are the desired forces produced by the 

outer loop controller in right front, left front, left rear and right rear respectively. This will 

produce an ideal targeted force for semi active suspension system in seven DOF ride model. 

Equation (8) to Equation (10) can be rearranged in matrix form as following. 
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             (11) 

 

A linear equations system y = Cx, if mxmC  contains full row rank, then there exists a right 

inverse 1C such that mxmICC 1 . The right inverse can be computed using   11   TT CCCC . 

Thus, the inverse relationship of Equation (11) can be expressed as: 
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This equation was developed as a decoupling transformation subsystem as shown in Figure 3. 

For the outer loop controller, a simple PID controller is used for suppressing body velocity, pitch 

rate and roll rate. Parameters for simple PID controller were chosen by trial and error and can be 

summarized in Table 1. 

 

Table 1. PID Controller Parameter 

PID Controller KP KI KD 

Body velocity, Z  200000 1 10 

Body roll rate,   600000 1 100 

Body pitch rate,   
150000 10 100 

 

 

2.4 Skyhook Controller 

 

For the inner loop controller, Skyhook controller is proposed to provide imaginary damper to the 

semi-active suspension system as shown in Figure 4. The imaginary damper is fixed between the 

sprung mass, Ms and virtual inertial space (Yu et al., 2011). The ideal equation of skyhook 

damping force, Fsky is given by; 

 

1  xCF skysky
                (13) 

 

In theory, the imaginary damper will be used to determine the desired damping force required to 

stabilize the vertical motion. In this study, this virtual force will be realized by the semi active 

damper located between sprung and unsprung masses. Therefore, Skyhook gain, Csky can be 

optimized by optimizing the damping coefficient of the armored vehicle’s damper. 
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Figure 4. Skyhook equivalent force 

 

 

From Figure 4, damper force of the semi-active absorber, dF  can be defined by 

 

)( 12 xxCF sad
                 (14) 

 

 

Since the skyhook damper model and semi active damper model are equivalent, the following 

equation can be derived: 

  

dsaskysky FxxCxCF  )( 121
              (15) 

 

Parameters for skyhook controller is chosen by trial and error and can be summarized in Table 2. 
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Table 2. Skyhook controller parameter 

SKYHOOK Controller Value (N/m-1) 

SKYHOOK1( skyRRC ) 20000 

SKYHOOK2( skyRLC ) 20000 

SKYHOOK3( skyFRC ) 25000 

SKYHOOK3( skyFLC ) 25000 

 

 

2.5 Particle Swarm Optimization (PSO) for Hybrid Controller Parameters 

 

The Hybrid control structure must be optimized by optimization method to provide an optimum 

value for the Skyhook gain. Optimization method used in this study is a Particle Swarm 

Optimization (PSO) method. PSO is an optimization strategy that mimics the behavior of various 

agents moving in swarm. Each agent carries its own fitness level which will determine its next 

position and velocity of travel. The particle with best fitness will be chosen to represent the 

solution to optimization problem. As a swarm, each particle then will exchange information 

about their position, velocity and fitness and the behavior of the swarm will be influenced to 

increase the probability of particle migration to the region of high fitness. PSO is often chosen as 

an optimization strategy due to its simple operation and efficient algorithm. 

 

After PSO chooses parameter for the optimum solution, it will multiply the parameter by 

uniform random term to prevent premature convergence. Particles which are the individuals that 

formed at the beginning of PSO process will remain fully function till the best solution is found. 

On the other hand, the process for optimization continues until either algorithm achieves desired 

result or acceptable solution cannot be found within computational limit. There are two factors 

that fluent the movement of particle which are global particle to particle best solution and local 

particle iteration to iteration best solution. These two factors will determine the direction and 

amount of movement resulting from particle velocity.  

The PSO defines position for iX   each particle in the D-dimensional space as 

 

 ),,.,( .........21 iDiii XXXX                 (16) 

 

where the subscript ' thi ' represents the particle number and the second subscript is the 

dimension, which corresponds to the number of parameters defining the solution. The memory of 

the previous best position is represented as, 

 

),,.,( .........21 iDiii pppp                (17) 
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For each thi  particle, Velocity, iv  for each dimension is independently established as;  

 

),,.,( .........21 iDiii vvvv                (18) 

 

After each iteration, the velocity term is updated and the particle is moved with some 

randomness in the direction of its own best position,  pbest, and the global best position, gbest 

based on its own velocity in all dimensions. This is apparent in the velocity update equation, 

given by; 

 

                                                          

)(]1,0[)(]1,0[
)()()()()()1( t

id

t

gd

t

id

t

id

t

id

t

id XpUsXpUcvwv 


         (19) 

 

The new  position is then according to the velocity from (19) ; 

 
)()()1( t

id

t

id

t
id vXX 


                                                              (20) 

 

where, 

U [0,1]   = samples a uniform random distribution from 0 to 1 

  t    =  relative time index 

c     = weights trading off the impact of the local best solutions 

s     = weights trading off the impact of the global best solutions 

w     = weight of inertia impact for each particle 

 

The particle swarm optimization algorithm is highly efficient in searching complex and 

continuous solution landscapes. The PSO can also be implemented as a parallel algorithm by 

improving its efficiency for real-time applications. In addition, The particles can be split up 

among multiple processors and then the global best solution is shared among the particles.  

 

In this study, PSO is used to optimize the value of Csky for each wheel respectively. There are 4 

values of Csky corresponding to four input variables to be optimized. This means that the swarm 

particles will have four dimensions each. Position for each particle, iX  corresponds to values of 

the four input variables. These values will be applied on the controller model which will evaluate 

body, pitch and roll acceleration. These three responses will be formulated to be the objective 

functions for the optimization problems follows: 

 

Fitness function, 222)(    ZXJ i             (21) 
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Here, Z , , and  are the RMS values for body, pitch and roll acceleration respectively. The 

particle with the best fitness will be chosen and compared with the personal best record and 

global best record. Position for the best particle will be saved for next iterations. 

 

To summarize, Table 3 lists the main parameters values used in the PSO optimization and Figure 

5 shows the algorithm for Particle Swarm Optimization to optimize Skyhook controller 

parameters for hybrid control structure. 

 

 

Table 3. PSO parameter to optimize Skyhook controller 

PSO Parameter Value 

iX  5 

d  4 

k  10 

c  1.42 

s  1.42 

w  0.9 
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Figure 5. PSO algorithm to optimize Skyhook controller 
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Figure 6.  Hybrid control structure for semi active suspension system optimized by Particle 

Swarm Optimization algorithm 

 

Figure 6 shows the overall hybrid control structure with PSO optimization. As shown in the 

Figure 6, the hybrid control structure for Stability Augmentation System (SAS) uses PID and 

Skyhook controller. The outer controller which utilized PID controller provides a ride control 

that separates vehicle body from roll moment and pitch moment that caused by road disturbance 

by stabilizing body acceleration, body pitch and body roll response of vehicle body. Meanwhile, 

Skyhook controller will provide imaginary damper to the vehicle model to improve the damping 

characteristics of vehicle suspension system. Skyhook controller will provide the desired 

damping force for the semi active suspension system to remove any unwanted motion. However 

without an optimization value of Skyhook gain for Skyhook controller, the performance of 

vehicle model will not be at the best stage. The purpose of Particle Swarm Optimization is to 

optimize and determine the optimum values for Skyhook gain in Skyhook controller to enhance 

the ride and stability performance of vehicle model. 
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3.0  PERFORMANCE EVALUATION 

 

The function of the nonlinear mathematical model of seven DOF ride model is to simulate the 

dynamic characteristic in observing the vertical performance of the vehicle model in terms of its 

body acceleration, body pitch acceleration, and body roll acceleration responses. Simulation for 

the proposed hybrid control strategy was carried out by using a ride over bump test within 

MATLAB/SIMULINK software. In real life application, ride over bump will cause roll moment 

and pitch moment that will cause discomfort to the soldier travelling in the armored vehicles. 

Besides, the extreme road profile faced by armored vehicle during operation also may cause 

pitch and roll moment that may cause wheels to lose contact with the road surface. 

Consequently, this will lead to fatal accidents. From the simulation, the response of vehicle body 

acceleration, body pitch acceleration and body roll acceleration were observed in order to 

improve ride quality and performance of the armored vehicle. The ride over bump test was 

chosen since this is the commonly road condition faced in the armored vehicle during operation. 

A sine wave was generated as road input to seven DOF vehicle ride model with the amplitude of  

0.1 m, frequency of 1 rad/sec and for different phase at each wheels as shown in Table 4. With a 

fixed step size of 0.01 second, the simulation was executed for 10 seconds by using  

Bogacki–Shampine solver. HMMWV was selected as a benchmark for vehicle simulation model 

due to its similar characteristics to the armored vehicle. 

 

 Table 4: Phase for road input at each tires 

Tire Phase 

Front Left 0 

Front Right Pi/4 

Rear Left Pi/2 

Rear Right Pi/3 

 

The parameter for seven DOF vehicle ride model are as shown in Table 5. The values were 

manipulated within acceptable range value to make sure the response from model simulation can 

be verified with the output response from the CARSIM software response as reported in previous 

study (Amin et al., 2015).  In the hybrid controller design, reference value for Fz, Mpitch and Mroll 

are set to be zero. In this study, the ride performance of vehicle model will be evaluated against 

passive vehicle model, vehicle model with simple PID control structure (no inner loop 

controller), with vehicle model hybrid control structure and vehicle model with hybrid control 

structure, optimized by Particle Swarm Optimization (PSO) algorithm. In this study, the 

proposed PSO optimized hybrid controller performance will be evaluated by comparing the ride 

performance of the vehicle model with passive suspension, semi active suspension with outer 

loop PID controller (no inner loop), and hybrid control structure without PSO. 

 

 

 



Journal of Engineering and Technology 
 
 

 

ISSN: 2180-3811   Vol. 6 No. 2 July-December 2015 

137 

 

 

Table 5. Seven DOF ride model parameter based on HMMWV  

Parameter Value 

Base front 1.07 m 

Base rear 2.232 m 

Ksfl, Ksfr, Ksrl, Ksrr 35000 N/m 

Csfl, Csfr, Csrl, Csrr 3000 Ns/m 

Ktfl, Ktfr, Ktrl, Ktrr 450000 N/m 

Inertia pitch 4331.6 kg.m2 

Inertia roll 1243.1 kg.m2 

Sprung mass 2210 kg 

Mass wheel 125 kg 

Wheel base 1.9 m 

 

3.1 Simulation Results 

 

The performance of the hybrid control structure with Particle Swarm Optimization (PSO) was 

evaluated in time domain simulation. The responses for body acceleration, body pitch and body 

roll acceleration will be observed to investigate its effectiveness in improving ride performance 

of the seven DOF vehicle ride model of armored vehicle.  

 

The body acceleration response for hybrid control structure optimized by PSO improved 

drastically than that of hybrid control structure without optimization, followed by simple PID 

control structure and lastly, passive suspension performance. As shown in Figure 7, the 

amplitude of body acceleration responses for PSO optimized hybrid controller was the lowest 

than the other control structures during the transient state response. In a steady state response, the 

response of hybrid control structure optimized by PSO performs better than other controllers.  

From the simulation, it takes about 1.56 seconds for the body acceleration response of hybrid 

control structure optimized by PSO, to enter steady state. Eventhough the responses of all control 

structure show better performance than passive suspension, there are some chattering visible on 

the response at transient state. However, the chattering can be neglected due to the significantly 

small value (peak to peak) and does not affect the ride performance of vehicle model. The 

percentage maximum overshoot reduction for hybrid control structure optimized by PSO was 

reduced by 92.01%, followed by hybrid control structure without optimization 90.15% and lastly 

simple PID control structure 86.51% compares to passive suspension. Meanwhile for the 

improvement, Root Mean Square (RMS) average percentage of reduction for body acceleration 

response was shown in Table 6. 
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Figure 7. Body acceleration response for different control strategies 

 

Table 6. RMS percentage of reduction for body acceleration response 

Control strategies RMS percentage of reduction (%) 

Simple PID controller 26.06 

Hybrid controller without optimization 48.80 

Hybrid controller optimize by PSO 59.02 

 

Observing body pitch acceleration response as shown in Figure 8, it was shown that Hybrid 

control structure  optimized by PSO algorithm provide a better result in reducing pitch 

acceleration of the seven DOF vehicle ride model of armored vehicle. It can be seen that the 

Hybrid control structure without optimization shows better performance for body pitch 

acceleration response than PID control structure.  From Figure 8, the amplitudes of body pitch 

acceleration response for Hybrid control structure optimized by PSO was lower than Hybrid 

control structure without optimization followed by simple PID control structure and passive 

suspension. From the simulation result, body pitch acceleration response it takes 1.66 seconds 

from to enter steady state response from transient state. In transient state response, there are 

some chattering visible. However, the chattering were significantly small to be considered and 
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does not affect the ride performance of vehicle model. Meanwhile for the improvement, peak to 

peak percentage of reduction was shown in Table 7. 

 

 
Figure 8. Pitch acceleration response for different control strategies 

 

 

Table 7. Peak to peak percentage of reduction for pitch acceleration response 

Control strategies Peak to peak percentage of reduction (%) 

Simple PID controller 29.44 

Hybrid controller without optimization 49.51 

Hybrid controller optimize by PSO 59.62 

 

In Figure 9 body roll acceleration responses were presented. It was shown that PSO optimized 

hybrid controller has shown a better performance than hybrid control structure without 

optimization followed by simple PID control structure and passive seven DOF vehicle ride 

model. From Figure 9, the response of body roll acceleration takes about 2.22 seconds from 

transient state to steady state phase response. In transient state response, there are some 

chattering visible on the response. However, the chattering was significantly small to be 

considered and does not affect the ride performance of vehicle model. In steady state, the 

amplitudes of body roll acceleration response for hybrid control structure optimized by PSO was 

lower than other control structure and passive seven DOF vehicle ride model. Meanwhile for the 

improvement, peak to peak percentage reduction was shown in Table 8. 
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Figure 9. Roll acceleration response for different control strategies 

 

 

Table 8. Peak to peak percentage of reduction for roll acceleration response 

Control strategies Peak to peak percentage of reduction (%) 

Simple PID controller 35.88 

Hybrid controller without optimization 53.29 

Hybrid controller optimize by PSO 66.56 

 

From the three performance criteria reported before, two observations can be stated: 

 

i. The proposed Hybrid controller perform better than simple PID controller in improving 

ride performance; and  

ii. The PSO implementation has managed to improve the performance of the Hybrid 

controller. 

 

4.0 CONCLUSION 

 

In conclusion, it is clearly shown that the hybrid control structure is capable to improve the body 

acceleration, body pitch acceleration and body roll acceleration responses better than PID control 

structure and passive suspension system of seven DOF vehicle ride model. Moreover, hybrid 

control structure optimized by PSO algorithm gives better improvement for ride performance 

than hybrid control structure without optimization. Due to these improvements, the ride 

performance and stability of the armored vehicle improved drastically by using the proposed 
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control structure. In real life application, ride and handling performance during combat training 

or in battlefield can be improved by isolating the armored vehicle from vibration due to road 

disturbance and extreme road profiles. This will improve stability, provide comfort to the soldier 

traveling in the armored vehicle and maintaining contact between wheel and road surface. 

Hence, fatal accident that killed soldier may be prevented, and the cost of repairing the armored 

vehicle that involved in an accident due to poor maneuvering can be reduced. 
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