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ABSTRACT 

 

This paper presents the modeling of multi-degree-of-freedom on laminated rubber-metal 

spring in axial direction displacement. Two methods are used, the first method is the 

eigenvalues and eigenvectors solution and the second method is harmonic motion solution. 

In eigenvalues and eigenvectors approach, an equation of motion of laminated rubber-metal 

spring is developed using a spring-mass system. Then, the equation was rewritten again in 

matrix and harmonic motion in order to reduce the difficulty and become realistic to be 

solved using characteristic equation. On the other hand, harmonic motion approach is 

started from governing equation in term of mode shape. By using this concept, two important 

equations are finally derived which are displacement and velocity. Using these two methods, 

finally the maximum displacements of laminated rubber-metal spring are plotted as well as 

in frequency domain axis. Two types of analysis are considered in this study which are 

undamped and damped system. Based on the results obtained, the maximum displacement 

occurred at the undamped system. By increasing the number of degree-of-freedom, the 

displacement is slowly reduced.  
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1.0 INTRODUCTION 

 

Recently, in order to reduce the unwanted vibration from powertrain in automotive engine 

transferred to the car structure, various mounting systems have been proposed by scientists 

and engineers (Arib Rejab et al., 2013; Pan, Yang & Yan, 2014). There are several types of 

these mounting system which are hydraulic mounting, active mounting, semi-active 

mounting, elastomeric mounting and many more. All of the mountings usually use natural 

rubber as the principle material. At low frequency, this mounting functions successfully but 

at high frequency, the response to the unwanted vibration can be questioned. Overall, many 

researchers have agreed the range of low frequency is in the range of 1 to 80 Hz and for high 

frequency the range started from 120 Hz. The range is valid for automotive areas including 

powertrain system (Pan et al., 2014; Shi, Wu, Lloyd & Li, 2014; Xie, Yu & Li, 2013). In 

order to overcome the problem faced in high frequency range of vibration, new mounting or 

isolator has been introduced called laminated rubber-metal spring (LR-MS). This new 

isolator can be categorized into multi-degree-of-freedom (m-DOF). In single-DOF (single-
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DOF), the isolator was developed using fully natural rubber (NR) in rod molding. In two-

DOF (two-DOF), metal plate is added in NR rod and place at the center. Metal plate is 

proposed to divide NR rod into two sections. When it occurred, the NR rod is called two-

DOF of LR-MS. In order to increase the number of DOF, number of the metal plate is 

increased. All the response in transmissibility effect can be referred from previous 

publication (Salim, Putra, Thompson, Ahmad & Abdullah, 2013; Salim, Abdullah, Putra, 

2014a:2014b:2014c; Abdullah, Salim, Putra, 2014). 

 

In this paper, eigenvalues and eigenvectors solution is used to determine the maximum 

displacement occurred in m-DOF of LR-MS. Using this solution, the physical behavior of 

LR-MS was transferred to the equation of motion (EOM). Based on the EOM, the equation 

was rewritten again into matrix form and harmonic motion. It is a necessary procedure to 

make it easy and becomes realistic to be solved using characteristic equation. The details are 

discussed in the next section. Furthermore, this paper also describes on the method of 

harmonic motion solution to solve LR-MS in axial direction displacement. In this method, 

it is derived from governing equation in term of mode shape. Finally, two important 

equations have successfully been derived which are displacement and velocity. However, 

this study is only focused on axial direction displacement. 

 

 

2.0 RESEARCH METHODOLOGY 

 

2.1 Eigenvalue and Eigenvector  

 

The full scale schematic diagram for the experimental of LR-MS for single- DOF is shown 

in Figure 1 (Salim et al., 2014a). According to Figure 1, the LR-MS is coupled with a flexible 

foundation at the top part and rigid foundation at the bottom part. The flexible foundation 

represents the free boundary condition while the other side represents the fixed boundary 

condition. The free boundary condition is necessary to give a free movement to a shaker for 

excitation force from flexible foundation to LR-MS. On the other hand, fixed boundary 

condition is applied to block any movement from LR-MS including displacement, rotational 

and moment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Full scale schematic diagram for the experiment of laminated rubber-metal spring  
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Figure 2 shows the LR-MS system for single-DOF and it is standalone from the 

experimental test rig and Figure 3 shown two-DOF of LR-MS. The criteria of single-DOF 

of LR-MS, the rod is developed using NR material which is known as a compressible 

behavior which is accurate to represent as a vibration isolator. From single-DOF of LR-MS, 

two pieces of metal plates are placed at the top and the bottom of LR-MS system. Overall, 

it is standard procedure to evaluate the strength and compressible behaviors of LR-MS itself 

before further analysis can be made. Through this procedure, it can be described by a spring-

mass system and presented in Figure 4. In this system, 1m  and 2m  represents as a flexible 

and rigid foundation, respectively. Then, 1k  represents as a stiffness of LR-MS and 1y , 2y  

are displacements in y-direction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Single-degree-of-freedom for laminated rubber-metal spring 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Two-degree-of-freedom for laminated rubber-metal spring 

  

 

 

 

 

 

 

 

 

Figure 4. Basic schematic diagram for laminated rubber-metal spring coupled with two 
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To ensure the quantum of strength and compressible on the LR-MS system, the method 

called eigenvalues and eigenvector are used to observe the mode shape behavior for LR-

MS system. Basically, the equation of motion is derived from Figure 4 and it is given by 

 

0211111  ykykym                         (1) 

 

and 

 

0112122  ykykym                        (2) 

 

In matrix form: 
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In harmonic motion: 
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 By expending Equation (4), the new equation can be written as 
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The solution is determinant equal to zero and used to make homogenous equation. The 

equation can be represented as 
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For characteristic equation: 
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By expending Equation (7), the new equation is 
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By applying factorial concept, Equation (8) is become 
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Presume that X2 and then substitute into Equation (9). The new equation is becoming 

 

021111

2  mXkmXkmmX                       (10) 

 

or 

 

  012121

2  kmmXmmX                       (11) 

 

Quadratic solution is used and two equations are created as  
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and     
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The eigenvalues equation then can be written as: 
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or    
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For eigenvectors equation, there are two cases which are  
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Using Equation (16), the matrix can be solved and solution (For case 1), is shown below.  

 

    02111

2

1  ykymk                        (17) 

 

By expanding Equation (17), the equation becomes 
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Numerator – Case 1 

Denumerator – Case 2 
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By simplifying Equation (19) into less denumerator, the equation becomes 

 

0211

2

11

1

11
1 








 yky

m

mk

m

mk
k                      (20) 

 

or 

 

0211

2

11
11 








 yky

m

mk
kk                       (21) 

 

From Equation (21), the standalone stiffness equation can be removed. The new equation 

becomes 
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By stabilizing for both hand side (HS), Equation (22) can be written as 
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By transferring negative sign into left hand side (LHS), Equation (23) now becomes 
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Equation (24) can be simplified and finally the case 1 solution is 
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For case 2, the procedure for the solving the matrix is similar to case 1. Firstly, the equation 

of motion in Equation (16) can be represented as 
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2

111  ymkyk                        (26) 

 

Then, Equation (26) can be expanding to another form to make it easy to solve and it can be 

written as  
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By simplifying Equation (28) into neglected 2m as a denumerator, the new equation is 

become 
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Standalone stiffness as expressed in Equation (30) can be reduced because they has same 

quantum but only different in magnitude. Therefore the equation can be written as 
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By relocating the position of both displacement, Equation (31) can be represented as 

 

2

1

21
11 y

m

mk
yk 








                        (32) 

 

The negative sign now is transferred into LHS, the equation becomes 
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The solution of case 2 can be solved into two solutions which are 
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Equation (25) and Equation (34) can be used in higher order of LR-MS system. 

 

Based on the derived Equation (34) and Equation (35), solutions derived in this study 

significantly proved that for the LR-MS, the input force is equal to the output force, which 

correctly satisfies the conservation law. However, if, at a condition where the input force is 

equal to output force, the proposed LR-MS material is not effective to absorb the load given, 

thus the laminated spring added to the LR-MS will enable higher input force to be absorbed 

during operation. With non-addition of the laminator, the current isolator will also fail due 

to bulging effect at maximum load condition 

 

2.2 Harmonic Motion Solution 

 

Eigenvalues and eigenvectors are the methods to determine the motion in each mode which 

has a fixed shape. The shape for mode one is represented in Equation (25) and shape for 

mode two in Equation (35), respectively. In mode shape 1, it must be in time harmonic, 

which is plotted in frequency domain results, and the shape is proportional with mass ratio. 

For mode shape 2, the elaboration is still valid as the same as in mode shape 1. Mode shape 

1 also can be written in harmonic motion where the governing equation is 
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where 1Y and 2Y  are values of mode shape, 
 1 shape at 1, 

ti
e 1 is harmonic motion in term 

of frequency domain and 1M  is modal amplitude at mode shape 1. 

 

Equation (36) also can be rewrite in another form which is 
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where 1A  and 1B  are modal amplitude and 1  is quantum of frequency at mode shape 1. 

 

For mode shape 2, it is also can be written in harmonic motion and they is 
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where 
 2 shape at 2, and 2M  is modal amplitude at mode shape 2. 

Equation (38) can be rewritten again into harmonic motion and the new equation is 

 



Journal of Engineering and Technology 
 

 

ISSN: 2180-3811   Vol. 6 No. 2 July-December 2015 

159 

 
 

 
 

    tBtA
tY

tY
22

2

22

2

2

1
sincos  









                    (39) 

 

where 2A  and 2B  are modal amplitude and 2 is quantum of frequency at mode shape 2. 

 

In superposition, it can be done only in free vibration. This requirement is still valid for LR-

MS system shown in Figure 3. This phenomenon happen in each of the two modes of 

vibration as discussed before. Equation (36) and Equation (38) can be merged into one 

equation and it can be expressed as 
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and 
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According to Equation (40) and Equation (41), the actual motion of LR-MS system is 

depending on the initial condition. Based on the equation, the initial condition can be 

assumed using the value time variant t  or displacement of mass Y . By taking 0t  and 

displacement at mass 1 is unity for both amplitudes, mass 2 is still considered as unity for 

upper side and -0.5 for bottom side, then both masses are considered released from rest, the 

general formulation can be stated as 
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Equation (42) can be separated as well into displacement for mass 1 and mass 2. The 

separated equations are shown below.  

 

  tBtAtBtAtY 222211111 sincossincos                        (43) 

 

and 

 

  tBtAtBtAtY 222211112 sin5.0cos5.0sincos                    (44) 

 

Equation (43) and Equation (44) can be written in velocities equation by differentiating the 

equation by time variant. The new equations become 

 

  2222221111111 sincossincos  BtAtBtAtY                   (45) 

 

and 
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  tBtAtBtAtY 2222221111112 sin5.0cos5.0sincos                   (46) 

 

3.0 RESULTS AND DISCUSSION 

 

Equation (43) and Equation (44) present the equation of displacement and Equation (45) and 

Equation (46) present the equation of velocity for LR-MS system. These equations can be 

used for both cases either in undamped and damped system for LR-MS. In this study, it 

focused on the displacement. All of the results are shown in Figure 5 until Figure 7. In Figure 

5 (a) and (b), the graph shows the result for undamped and damped system for single-DOF 

of LR-MS. The maximum peak for displacement locates at the same place in the range of 

frequency of 14 Hz but totally different in the value of displacement. At undamped system, 

the maximum displacement is recorded at 5 x 10-3 mm and for damped system is 2.5 x 10-4 

mm. According to the displacement data, the displacement for undamped system is higher 

than damped system. For the assumption, it happens because in undamped system, the 

damping coefficient is not playing the role and because of this reason, the peak is high 

without any damping energy influencing the phenomenon.  

 

In two-DOF of LRMS, there are two peaks recorded at 9 and 23 Hz. These two peaks 

represented the first and second natural frequency of the system respectively. The locations 

of these two natural frequencies are located at the same place for both cases either in 

undamped and damped systems. The straight line represents bottom mass and dotted line is 

for top mass. The quantum of displacement for both masses are totally different where the 

bottom mass, it is recorded at 2.0 x 10-3 mm and 4.2 x 10-4 mm for both undamped and 

damped systems. For the top mass, the maximum displacements are recorded at 3.4 x 10-3 

mm for undamped system and 7.0 x 10-4 mm for damped system. The displacement patterns 

are quite the same compared with the single-DOF of LR-MS system.  

 

In order to ensure the maximum displacement affected by damping coefficient, three-DOF 

of LR-MS system should be developed. With this system, it is recorded to have three peaks 

at 6, 17 and 26 Hz. All three of these peaks represents the natural frequency of the system. 

In this system, there are three lines for both graphs which represent the bottom, center and 

top masses. Overall, the displacement is totally different although locates at the same 

frequency. For the undamped system, the maximum displacement are recorded at 1.5, 3.0 

and 4.0 x 10-3 mm for bottom, center and top masses. In the damped system, the maximum 

displacement are recorded at 0.6, 1.0 and 1.4 x 10-3 mm. The maximum displacement 

recorded at three-DOF of LR-MS system. It can be concluded that the maximum 

displacement of LR-MS system is influenced by damping coefficient. By increasing the 

value of damping coefficient, it can reduce the displacement of the system. 
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(a) 

 
(b) 

Figure 5. Single-degree-of-freedom: (a) undamped and (b) damped system 
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(a) 

 
(b) 

Figure 6. Two-degree-of-freedom: (a) undamped and (b) damped system 

(─) 1st displacement and (--) 2nd displacement 
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(a) 

 

 
(b) 

Figure 7. Three-degree-of-freedom: (a) undamped and (b) damped system 

(─) 1st displacement, (--) 2nd displacement and () 3rd displacement 

 

In addition, the displacement of each mass is depending separately for a system with more 

than one mass. This has been proven successful where two-DOF and three-DOF of LR-MS 

systems, the maximum displacement occurs separately for each mass. Therefore, Equation 

(25) and Equation (26) are valid for m-DOF of LR-MS system. Then, Equation (43) and 

Equation (44) is still valid in the method of determining the maximum displacement, but 

modal amplitude should be provided to produce the solution. 

 

4.0 CONCLUSION 
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is continued to two-DOF and three-DOF. The results have shown the undamped system 

represented maximum displacement compared to damped system.  
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