
ISSN: 2180-3811         Vol. 10     No. 2    July - December 2019

Investigation on the Interaction Analysis of Beam-Nonlinear Isolator with Low and High Stiffness Support

193

INVESTIGATION ON THE INTERACTION ANALYSIS OF 
BEAM-NONLINEAR ISOLATOR WITH LOW AND HIGH 

STIFFNESS SUPPORT

K. K. Turahim1*, K. Djidjeli2, J. T. Xing3 

1,2,3Faculty of Engineering and Physical Science, University of Southampton, 
University Rd, Southampton SO17 1BJ, England.

Article History: Received 9.7.2019; Revised 3.11.2019; Accepted 2.12.2019

ABSTRACT

This paper presents the study of the interaction between a beam and a nonlinear isolator for 
low and high supporting stiffness. The system consists of an elastic beam- like structure and 
a geometrically nonlinear isolation system in which a horizontal degree provides a physical 
approach for realising the required horizontal force. The generalised dynamic equations 
of the system are derived and the modal summation method is used to analyse the beam. 
The dynamic interaction mechanism between the nonlinear isolation system and the elastic 
structure is revealed. The beam- nonlinear isolator design for low stiffness support and high 
stiffness support is discussed. It is found that the beam provides additional mass, stiffness 
and force to the nonlinear vibration isolator and the requirement to perform ground vibration 
test whereby the rigid mode of the beam must be less than one third of the first elastic natural 
frequency of the free-free beam has been satisfied. The condition to achieve high stiffness 
support has also been satisfied. Nonlinear dynamical behaviour of the beam-nonlinear isolator 
indicates that period doubling bifurcation occurs when the excitation force is 1 and excitation 
frequency is 0.5Hz. Poincare’ maps reveals that the system form closed loops and no chaotic 
behaviour is observed. Perfomance analysis in terms of force transmissibility of the nonlinear 
isolator shows that the nonlinear isolator performs better than a linear isolator and also 
performs better than a hardening HSLDS mount. 
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1.0 INTRODUCTION

Vibration isolation systems with particular low or high suspension frequencies 
are of great importance in scientific and industrial fields.  For ground vibration 
tests (GVT) of very large civil aircrafts, the suspension frequency required is less 
than 1/3 of the system’s fundamental frequency (Green, 1945). The aim of GVT 
is to simulate an aircraft in a free-free state on the ground.  For large thin-wing 
aircraft with fundamental frequencies below 1 Hz, some further development in 
methods of support is necessary. An application that requires a high suspension 
frequency can be found in laboratory vibration tests, whereby a rigid boundary 
condition of the foundation is often assumed, thus the dynamic supporting 
stiffness is required to be very high up to infinity (Wagg & Nield, 2010). Due to 
the limitation of traditional linear passive isolation units, it is hard to achieve 
these particular low and high suspension frequency. According to Inman (2007) 
, passive isolation units experience an issue of static deflection whereby it can 
perform very well when the systems natural frequency is decreased, which 
will increase its isolation frequency bandwidth. Unfortunately, a low natural 
frequency, which means having a low supporting stiffness, will result in a large 
static deflection which is undesirable. Currently there is a growing interest in 
the study of nonlinear isolators due to the benefits of nonlinearity and the fact 
that many practical isolators exhibit nonlinear behaviour (Kovacic et al. 2008). 
Linear passive vibration isolators are only effective if the excitation frequency 
is larger than √2 times the natural frequency. The lower the static stiffness of 
a system and hence the lower the natural frequency, the wider the isolation 
region. However, a low static stiffness causes a large static deflection. This 
can be overcome by adding oblique springs to obtain a high static stiffness, 
small static displacement, small dynamic stiffness and hence low natural 
frequency (Rivin, 2003). Practical isolation units have to be connected on to the 
supported structures, hence the structure vibration behaviour and the isolation 
dynamic characteristics will affect each other. Therefore, the practical system 
is a structure-isolation unit interaction system. To design an accurate practical 
isolation system, the interaction analysis is necessary. This research will 
consider the structure and isolation unit as an integrated interaction system to 
investigate its vibration behaviours using a numerical approach.
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2.0 BEAM-NONLINEAR ISOLATOR GENERAL MODEL

The integrated interaction system consists of an elastic structure which is 
supported by a nonlinear isolation unit as shown in Figure 1. The structure is 
considered as a uniform elastic free-free beam subject to two harmonic forces 
F0 cos Ω0 t applied symmetrically at point ξ0 under the beam coordinate system 
O−ξY fixed at the middle point O of the beam. There is a lumped mass 2M 
connected at point O by a rigid rod of which the mass is included into 2M. The 
beam is of span length 2S, mass density ρ per unit length and bending stiffness 
Ψ=EI. Since the beam is elastic, its deflection Y(ξ,t) is a function of beam 
material point ξ and time t. The lumped mass 2M is supported by a generalised 
nonlinear isolation system symmetrical to the vertical axis o−y, and therefore 
it moves in the y direction only. The two linear inclined massless springs of 
stiffness k and non-stretched length l are connected to the mass 2M with their 
other two ends being respectively connected to the two carts A and B of mass 
m allowing horizontal motions. There are two horizontal massless springs of 
stiffness K1 and non-stretched length L1 as well as two dampers of damping 
coefficient C1 connected to carts A and B, respectively. Along the symmetrical 
axis o−y, a spring-damper set consisting of a spring of stiffness 2K and non-
stretched length L and a damper of damping coefficient  2C is connected to the 
mass 2M. The coordinate x can identify the positions of the two carts. 

The model shown in Figure 1 is a generalised model of structure-nonlinear 
suspension interaction system. The arranged elements in this model are to 
realise practical designs for engineering applications. The horizontal spring-
damper unit (K1, C1) aims to provide a means to realise the two horizontal 
forces added at the two carts to adjust the vertical dynamic stiffness of the total 
system. A suitable adjustment of the initial length L1 of the spring K1 results 
in a pull or push force applied at the two carts A and B, which increases or 
decreases the vertical supporting stiffness of the system, respectively. The 
vertical spring-damper unit (K, C) supports the static weight of the mass 2M 
and the structure. The two spring-damper units (k, c) are the main elements 
with geometric nonlinear characteristics to adjust the dynamic supporting 
stiffness. The dampers in the system provide the adjusted parameters for the 
stability requirement of the system. Based on this generalised model, several 
simplified models (Platus, 1992), (Cao et al., 2008a,2008b), (Liu et al., 2012) can 
be obtained by introducing additional conditions or reducing some elements.
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Figure 1. An integrated interaction system consisting of an elastic beam and a 
generalised nonlinear isolation unit (Xing, 2017) 

2.1  Governing equations of integrated interaction system 
 

Considering the symmetry of the system in Figure 1, the right-half part of the system was 
investigated to derive the governing equations. It would be convenient to choose origin o 
of coordinate system 𝑜𝑜 − 𝑥𝑥𝑥𝑥   and origin O of beam coordinate system 𝑂𝑂 − 𝜉𝜉𝜉𝜉  
respectively located at their corresponding positions in a static equilibrium state when the 
mass 2𝑀𝑀 and the two inclined springs k are on the horizontal axis o-x with mass m at xo.  
To realise this, we can choose a suitable extension 𝛥𝛥 = 𝜉𝜉0 − 𝐿𝐿 of the vertical spring 𝐾𝐾 by 
investigating the static equilibrium of the system subject to the gravity only, i.e. 
 
 𝐾𝐾𝛥𝛥 = −𝑔𝑔(𝑀𝑀 + 𝜌𝜌𝜌𝜌), 𝛥𝛥 = −𝑔𝑔(𝑀𝑀 + 𝜌𝜌𝜌𝜌)/𝐾𝐾,

(𝐾𝐾1 + 𝑘𝑘)𝑥𝑥0 − 𝑘𝑘𝑘𝑘 = 𝐾𝐾1𝛥𝛥1, 𝛥𝛥1 = 𝑋𝑋0 − 𝐿𝐿1 
(1) 

 
 
2.1.1 Dynamic equilibrium equation and boundary conditions of beam structure 
 
The dynamic equilibrium equation of the beam is 
 
 

𝛹𝛹 𝜕𝜕4𝜉𝜉
𝜕𝜕𝜉𝜉4 + 𝜌𝜌 𝜕𝜕

2𝜉𝜉
𝜕𝜕𝑡𝑡2 = 𝛿𝛿(𝜉𝜉 − 𝜉𝜉0)𝐹𝐹0 𝑐𝑐𝑜𝑜𝑐𝑐 𝛺𝛺0 𝑡𝑡; 
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and the boundary conditions are: 𝜉𝜉′′ = 0 = 𝜉𝜉′′′, 𝜉𝜉 = 𝜌𝜌; 𝜉𝜉′ = 0,Ψ𝜉𝜉′′ = 𝑓𝑓𝑏𝑏𝑏𝑏, 𝜉𝜉 = 0 

Figure 1  An integrated interaction system consisting of an elastic beam and a 
generalised nonlinear isolation unit (Xing, 2017)

2.1  Governing Equations of Integrated Interaction System

Considering the symmetry of the system in Figure 1, the right-half part of 
the system was investigated to derive the governing equations. It would be 
convenient to choose origin o of coordinate system o − xy and origin O of beam 
coordinate system O − ξY respectively located at their corresponding positions 
in a static equilibrium state when the mass 2M and the two inclined springs k 
are on the horizontal axis o − x with mass m at xo. To realise this, we can choose 
a suitable extension Δ=Y0 − L of the vertical spring K by investigating the static 
equilibrium of the system subject to the gravity only, i.e.
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Here, fbs represents a dynamic shearing force acted on the beam section ξ = 0 by 
the rigid rod, δ()denotes delta function.

The beam is considered as a linear elastic structure, so that its motion can be 
represented in its mode space using a mode superposition method (Thomson, 
1996). In engineering, there are many nonlinear systems consisting of linear 
substructures connected by nonlinear connectors. For this type of nonlinear 
system, the mode superposition approach provides a very effective numerical 
model to study the motions of linear substructures (Xing & Price, 1991). 

The deflection Y(ξ,t) of the beam is represented by a mode summation form
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where 
 𝒀𝒀 = [𝑌𝑌1 𝑌𝑌2 ⋯ 𝑌𝑌𝑁𝑁], 𝜱𝜱 = [𝜑𝜑1 𝜑𝜑2 ⋯ 𝜑𝜑𝑁𝑁]𝑇𝑇, 

𝑌𝑌𝑛𝑛(𝜉𝜉) = 1
2 {𝑐𝑐𝑐𝑐𝑐𝑐ℎ( 𝜆𝜆𝑛𝑛𝜉𝜉/𝑆𝑆)

𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝜆𝜆𝑛𝑛
+ 𝑐𝑐𝑐𝑐𝑐𝑐( 𝜆𝜆𝑛𝑛𝜉𝜉/𝑆𝑆)

𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝑛𝑛
},

𝑡𝑡𝑡𝑡𝑡𝑡 𝜆𝜆𝑛𝑛 + 𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝜆𝜆𝑛𝑛 = 0, 𝑡𝑡 = 1,2,3, ⋯ 
 

(4) 

based on the non-dimensional symmetrical mode functions 𝑌𝑌𝑛𝑛(𝜉𝜉),(𝑡𝑡 = 1,2, . . . , 𝑁𝑁), of the 
uniform free-free beam. Here, 𝑁𝑁 denotes a number of the retained mode functions 𝑌𝑌𝑛𝑛(𝜉𝜉) 
and 𝜑𝜑𝑛𝑛 represents a generalised coordinate corresponding to mode n, which has a length 
dimension. These mode functions satisfy the following orthogonal relationships,  
 
 

∫ 𝑌𝑌𝑛𝑛
″𝐸𝐸𝐸𝐸𝑌𝑌𝑗𝑗

″
𝑆𝑆

0
𝑑𝑑𝜉𝜉 = { 0, 𝑡𝑡 ≠ 𝑗𝑗,

𝐾𝐾𝑛𝑛𝑛𝑛, 𝑡𝑡 = 𝑗𝑗,

∫ 𝑌𝑌𝑛𝑛𝜌𝜌𝑌𝑌𝑗𝑗
𝑆𝑆

0
𝑑𝑑𝜉𝜉 = { 0, 𝑡𝑡 ≠ 𝑗𝑗,

𝑀𝑀𝑛𝑛𝑛𝑛, 𝑡𝑡 = 𝑗𝑗, 
 

𝑀𝑀𝑛𝑛𝑛𝑛 = { 𝜌𝜌𝑆𝑆, 𝑡𝑡 = 1,
𝜌𝜌𝑆𝑆/4, 𝑡𝑡 ≠ 1,

𝐾𝐾𝑛𝑛𝑛𝑛 = {
0, 𝑡𝑡 = 1,

𝜆𝜆𝑛𝑛
4 𝛹𝛹

4𝑆𝑆3 , 𝑡𝑡 ≠ 1,

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛 𝑀𝑀𝑛𝑛𝑛𝑛⁄ = 𝜆𝜆𝑛𝑛
2

𝑆𝑆2 √𝛹𝛹
𝜌𝜌  

 

(5) 

The sub-index n indicates the mode number of the free-free beam, �̂�𝛺𝑛𝑛 , 𝐾𝐾𝑛𝑛  and 
𝑀𝑀𝑛𝑛 represent the n-th natural frequency, generalised stiffness and mass, respectively. For 
the free-free beam, its first mode is a rigid mode with frequency �̂�𝛺1 = 0  and mode 
function 𝑌𝑌1 = 1.   
 

                                                (3)
where
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Here, 𝑓𝑓𝑏𝑏𝑏𝑏 represents a dynamic shearing force acted on the beam section 𝜉𝜉 = 0 by the 
rigid rod, 𝛿𝛿()denotes delta function. 
 
The beam is considered as a linear elastic structure, so that its motion can be represented 
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Here, 𝑓𝑓𝑏𝑏𝑏𝑏 represents a dynamic shearing force acted on the beam section 𝜉𝜉 = 0 by the 
rigid rod, 𝛿𝛿()denotes delta function. 
 
The beam is considered as a linear elastic structure, so that its motion can be represented 
in its mode space using a mode superposition method (Thomson, 1996). In engineering, 
there are many nonlinear systems consisting of linear substructures connected by 
nonlinear connectors. For this type of nonlinear system, the mode superposition approach 
provides a very effective numerical model to study the motions of linear substructures 
(Xing & Price, 1991).  
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Here, 𝑓𝑓𝑏𝑏𝑏𝑏 represents a dynamic shearing force acted on the beam section 𝜉𝜉 = 0 by the 
rigid rod, 𝛿𝛿()denotes delta function. 
 
The beam is considered as a linear elastic structure, so that its motion can be represented 
in its mode space using a mode superposition method (Thomson, 1996). In engineering, 
there are many nonlinear systems consisting of linear substructures connected by 
nonlinear connectors. For this type of nonlinear system, the mode superposition approach 
provides a very effective numerical model to study the motions of linear substructures 
(Xing & Price, 1991).  
 
The deflection 𝑌𝑌(𝜉𝜉, 𝑡𝑡) of the beam is represented by a mode summation form 
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Here, 𝑓𝑓𝑏𝑏𝑏𝑏 represents a dynamic shearing force acted on the beam section 𝜉𝜉 = 0 by the 
rigid rod, 𝛿𝛿()denotes delta function. 
 
The beam is considered as a linear elastic structure, so that its motion can be represented 
in its mode space using a mode superposition method (Thomson, 1996). In engineering, 
there are many nonlinear systems consisting of linear substructures connected by 
nonlinear connectors. For this type of nonlinear system, the mode superposition approach 
provides a very effective numerical model to study the motions of linear substructures 
(Xing & Price, 1991).  
 
The deflection 𝑌𝑌(𝜉𝜉, 𝑡𝑡) of the beam is represented by a mode summation form 
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∫ 𝑌𝑌𝑛𝑛𝜌𝜌𝑌𝑌𝑗𝑗
𝑆𝑆

0
𝑑𝑑𝜉𝜉 = { 0, 𝑡𝑡 ≠ 𝑗𝑗,

𝑀𝑀𝑛𝑛𝑛𝑛, 𝑡𝑡 = 𝑗𝑗, 
 

𝑀𝑀𝑛𝑛𝑛𝑛 = { 𝜌𝜌𝑆𝑆, 𝑡𝑡 = 1,
𝜌𝜌𝑆𝑆/4, 𝑡𝑡 ≠ 1,

𝐾𝐾𝑛𝑛𝑛𝑛 = {
0, 𝑡𝑡 = 1,

𝜆𝜆𝑛𝑛
4 𝛹𝛹

4𝑆𝑆3 , 𝑡𝑡 ≠ 1,

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛 𝑀𝑀𝑛𝑛𝑛𝑛⁄ = 𝜆𝜆𝑛𝑛
2

𝑆𝑆2 √𝛹𝛹
𝜌𝜌  

 

(5) 

The sub-index n indicates the mode number of the free-free beam, �̂�𝛺𝑛𝑛 , 𝐾𝐾𝑛𝑛  and 
𝑀𝑀𝑛𝑛 represent the n-th natural frequency, generalised stiffness and mass, respectively. For 
the free-free beam, its first mode is a rigid mode with frequency �̂�𝛺1 = 0  and mode 
function 𝑌𝑌1 = 1.   
 

 and mode function Y1 = 1.  

Substituting Equation (3) into Equation (2) and using the orthogonal 
relationships (5), we obtain the following mode equation describing the beam 
motion 
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Substituting Equation (3) into Equation (2) and using the orthogonal relationships (5), we 
obtain the following mode equation describing the beam motion  
 
 𝒎𝒎�̈�𝜱 + 𝒌𝒌𝜱𝜱 = 𝒀𝒀𝑇𝑇(0)𝑓𝑓𝑏𝑏𝑏𝑏 + 𝒀𝒀𝑇𝑇(𝜉𝜉0)𝐹𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺0 𝑡𝑡,

𝒎𝒎 = diag(𝑀𝑀𝑛𝑛𝑛𝑛), 𝒌𝒌 = diag(𝐾𝐾𝑛𝑛𝑛𝑛), 𝜦𝜦2 = diag(Ω̂𝑛𝑛
2 ) 

(6) 

 
 
2.1.2  Dynamic equilibrium equations of the nonlinear supporting unit 
 
The dynamic equilibrium equation of the nonlinear supporting unit is 
 
 𝑴𝑴�̈�𝒙 + (𝑪𝑪 + 𝑪𝑪𝑐𝑐)�̇�𝒙 + (𝑲𝑲 + 𝑲𝑲𝑘𝑘)𝒙𝒙 = [𝐾𝐾1𝛥𝛥1

𝑓𝑓𝑏𝑏𝑏𝑏
], (7) 

where 
 
 𝑴𝑴 = [𝑚𝑚 0

0 𝑀𝑀] , 𝑪𝑪 = [𝐶𝐶1 0
0 𝐶𝐶] ,         𝑪𝑪𝑐𝑐 = 𝑐𝑐

𝜇𝜇2 𝒙𝒙𝒙𝒙𝑇𝑇,

𝑲𝑲 = [𝐾𝐾1 + 𝑘𝑘 0
0 𝐾𝐾 + 𝑘𝑘] ,

𝑲𝑲𝑘𝑘 = − 𝑘𝑘𝑘𝑘
𝜇𝜇 𝑰𝑰, 𝑰𝑰 = [1 0

0 1] , 𝒙𝒙 = [𝑥𝑥 𝑦𝑦]𝑇𝑇,        𝛥𝛥1 = 𝑋𝑋0 − 𝐿𝐿1,

𝜇𝜇 = √𝑥𝑥2 + 𝑦𝑦2 
 

(8) 

Here, 𝛥𝛥1 represents the static extension of horizontal spring 𝐾𝐾1 in the static state defined 
by Equation (1). The force 𝑓𝑓𝑏𝑏𝑏𝑏  denotes the reaction force from the beam to the lumped 
mass 2𝑀𝑀. The nonlinearity is given by 𝜇𝜇 which describes the oblique position of the 
spring, k  and damper, c. 
 
On the interaction section 𝜉𝜉 = 0 between the beam and the nonlinear suspension unit, a 
dynamic equilibrium condition and a geometrical constraint condition are required, i.e. 
 
Equilibrium: 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 = 0, − 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓, (9) 

Geometrical constraint: 𝑌𝑌(0, 𝑡𝑡) = 𝑦𝑦(𝑡𝑡), (10) 

   

which, when Equation (3) is used, is written in the mode form  
 
 𝒀𝒀0𝜱𝜱 = 𝑦𝑦, 𝒀𝒀0 = 𝒀𝒀(0) (11) 

Equation (1) to (11) give the governing equations describing the dynamics of the 
integrated interaction system.  
 
 
2.1.3  Non- dimensional dynamic equations 
 
To derive the non-dimensional equations of the system, the following non-dimensional 
parameters are introduced 
 

           (6)

2.1.2  Dynamic equilibrium equations of the nonlinear supporting unit

The dynamic equilibrium equation of the nonlinear supporting unit is

 
 
Journal of Engineering and Technology 
 
 

 
ISSN: 2180-3811   Vol. 10 No. 2  July – December 2019  
 

Substituting Equation (3) into Equation (2) and using the orthogonal relationships (5), we 
obtain the following mode equation describing the beam motion  
 
 𝒎𝒎�̈�𝜱 + 𝒌𝒌𝜱𝜱 = 𝒀𝒀𝑇𝑇(0)𝑓𝑓𝑏𝑏𝑏𝑏 + 𝒀𝒀𝑇𝑇(𝜉𝜉0)𝐹𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺0 𝑡𝑡,

𝒎𝒎 = diag(𝑀𝑀𝑛𝑛𝑛𝑛), 𝒌𝒌 = diag(𝐾𝐾𝑛𝑛𝑛𝑛), 𝜦𝜦2 = diag(Ω̂𝑛𝑛
2 ) 

(6) 

 
 
2.1.2  Dynamic equilibrium equations of the nonlinear supporting unit 
 
The dynamic equilibrium equation of the nonlinear supporting unit is 
 
 𝑴𝑴�̈�𝒙 + (𝑪𝑪 + 𝑪𝑪𝑐𝑐)�̇�𝒙 + (𝑲𝑲 + 𝑲𝑲𝑘𝑘)𝒙𝒙 = [𝐾𝐾1𝛥𝛥1

𝑓𝑓𝑏𝑏𝑏𝑏
], (7) 

where 
 
 𝑴𝑴 = [𝑚𝑚 0

0 𝑀𝑀] , 𝑪𝑪 = [𝐶𝐶1 0
0 𝐶𝐶] ,         𝑪𝑪𝑐𝑐 = 𝑐𝑐

𝜇𝜇2 𝒙𝒙𝒙𝒙𝑇𝑇,

𝑲𝑲 = [𝐾𝐾1 + 𝑘𝑘 0
0 𝐾𝐾 + 𝑘𝑘] ,

𝑲𝑲𝑘𝑘 = − 𝑘𝑘𝑘𝑘
𝜇𝜇 𝑰𝑰, 𝑰𝑰 = [1 0

0 1] , 𝒙𝒙 = [𝑥𝑥 𝑦𝑦]𝑇𝑇,        𝛥𝛥1 = 𝑋𝑋0 − 𝐿𝐿1,

𝜇𝜇 = √𝑥𝑥2 + 𝑦𝑦2 
 

(8) 

Here, 𝛥𝛥1 represents the static extension of horizontal spring 𝐾𝐾1 in the static state defined 
by Equation (1). The force 𝑓𝑓𝑏𝑏𝑏𝑏  denotes the reaction force from the beam to the lumped 
mass 2𝑀𝑀. The nonlinearity is given by 𝜇𝜇 which describes the oblique position of the 
spring, k  and damper, c. 
 
On the interaction section 𝜉𝜉 = 0 between the beam and the nonlinear suspension unit, a 
dynamic equilibrium condition and a geometrical constraint condition are required, i.e. 
 
Equilibrium: 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 = 0, − 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓, (9) 

Geometrical constraint: 𝑌𝑌(0, 𝑡𝑡) = 𝑦𝑦(𝑡𝑡), (10) 

   

which, when Equation (3) is used, is written in the mode form  
 
 𝒀𝒀0𝜱𝜱 = 𝑦𝑦, 𝒀𝒀0 = 𝒀𝒀(0) (11) 

Equation (1) to (11) give the governing equations describing the dynamics of the 
integrated interaction system.  
 
 
2.1.3  Non- dimensional dynamic equations 
 
To derive the non-dimensional equations of the system, the following non-dimensional 
parameters are introduced 
 

                               (7)

where
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Substituting Equation (3) into Equation (2) and using the orthogonal relationships (5), we 
obtain the following mode equation describing the beam motion  
 
 𝒎𝒎�̈�𝜱 + 𝒌𝒌𝜱𝜱 = 𝒀𝒀𝑇𝑇(0)𝑓𝑓𝑏𝑏𝑏𝑏 + 𝒀𝒀𝑇𝑇(𝜉𝜉0)𝐹𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺0 𝑡𝑡,

𝒎𝒎 = diag(𝑀𝑀𝑛𝑛𝑛𝑛), 𝒌𝒌 = diag(𝐾𝐾𝑛𝑛𝑛𝑛), 𝜦𝜦2 = diag(Ω̂𝑛𝑛
2 ) 

(6) 

 
 
2.1.2  Dynamic equilibrium equations of the nonlinear supporting unit 
 
The dynamic equilibrium equation of the nonlinear supporting unit is 
 
 𝑴𝑴�̈�𝒙 + (𝑪𝑪 + 𝑪𝑪𝑐𝑐)�̇�𝒙 + (𝑲𝑲 + 𝑲𝑲𝑘𝑘)𝒙𝒙 = [𝐾𝐾1𝛥𝛥1

𝑓𝑓𝑏𝑏𝑏𝑏
], (7) 

where 
 
 𝑴𝑴 = [𝑚𝑚 0

0 𝑀𝑀] , 𝑪𝑪 = [𝐶𝐶1 0
0 𝐶𝐶] ,         𝑪𝑪𝑐𝑐 = 𝑐𝑐

𝜇𝜇2 𝒙𝒙𝒙𝒙𝑇𝑇,

𝑲𝑲 = [𝐾𝐾1 + 𝑘𝑘 0
0 𝐾𝐾 + 𝑘𝑘] ,

𝑲𝑲𝑘𝑘 = − 𝑘𝑘𝑘𝑘
𝜇𝜇 𝑰𝑰, 𝑰𝑰 = [1 0

0 1] , 𝒙𝒙 = [𝑥𝑥 𝑦𝑦]𝑇𝑇,        𝛥𝛥1 = 𝑋𝑋0 − 𝐿𝐿1,

𝜇𝜇 = √𝑥𝑥2 + 𝑦𝑦2 
 

(8) 

Here, 𝛥𝛥1 represents the static extension of horizontal spring 𝐾𝐾1 in the static state defined 
by Equation (1). The force 𝑓𝑓𝑏𝑏𝑏𝑏  denotes the reaction force from the beam to the lumped 
mass 2𝑀𝑀. The nonlinearity is given by 𝜇𝜇 which describes the oblique position of the 
spring, k  and damper, c. 
 
On the interaction section 𝜉𝜉 = 0 between the beam and the nonlinear suspension unit, a 
dynamic equilibrium condition and a geometrical constraint condition are required, i.e. 
 
Equilibrium: 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 = 0, − 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓, (9) 

Geometrical constraint: 𝑌𝑌(0, 𝑡𝑡) = 𝑦𝑦(𝑡𝑡), (10) 

   

which, when Equation (3) is used, is written in the mode form  
 
 𝒀𝒀0𝜱𝜱 = 𝑦𝑦, 𝒀𝒀0 = 𝒀𝒀(0) (11) 

Equation (1) to (11) give the governing equations describing the dynamics of the 
integrated interaction system.  
 
 
2.1.3  Non- dimensional dynamic equations 
 
To derive the non-dimensional equations of the system, the following non-dimensional 
parameters are introduced 
 

        (8)

Here, Δ1 represents the static extension of horizontal spring K1 in the static state 
defined by Equation (1). The force fsb denotes the reaction force from the beam 
to the lumped mass 2M. The nonlinearity is given by μ which describes the 
oblique position of the spring, k and damper, c.

On the interaction section ξ = 0 between the beam and the nonlinear suspension 
unit, a dynamic equilibrium condition and a geometrical constraint condition 
are required, i.e.

Equilibrium:              
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Substituting Equation (3) into Equation (2) and using the orthogonal relationships (5), we 
obtain the following mode equation describing the beam motion  
 
 𝒎𝒎�̈�𝜱 + 𝒌𝒌𝜱𝜱 = 𝒀𝒀𝑇𝑇(0)𝑓𝑓𝑏𝑏𝑏𝑏 + 𝒀𝒀𝑇𝑇(𝜉𝜉0)𝐹𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺0 𝑡𝑡,

𝒎𝒎 = diag(𝑀𝑀𝑛𝑛𝑛𝑛), 𝒌𝒌 = diag(𝐾𝐾𝑛𝑛𝑛𝑛), 𝜦𝜦2 = diag(Ω̂𝑛𝑛
2 ) 

(6) 

 
 
2.1.2  Dynamic equilibrium equations of the nonlinear supporting unit 
 
The dynamic equilibrium equation of the nonlinear supporting unit is 
 
 𝑴𝑴�̈�𝒙 + (𝑪𝑪 + 𝑪𝑪𝑐𝑐)�̇�𝒙 + (𝑲𝑲 + 𝑲𝑲𝑘𝑘)𝒙𝒙 = [𝐾𝐾1𝛥𝛥1

𝑓𝑓𝑏𝑏𝑏𝑏
], (7) 

where 
 
 𝑴𝑴 = [𝑚𝑚 0

0 𝑀𝑀] , 𝑪𝑪 = [𝐶𝐶1 0
0 𝐶𝐶] ,         𝑪𝑪𝑐𝑐 = 𝑐𝑐

𝜇𝜇2 𝒙𝒙𝒙𝒙𝑇𝑇,

𝑲𝑲 = [𝐾𝐾1 + 𝑘𝑘 0
0 𝐾𝐾 + 𝑘𝑘] ,

𝑲𝑲𝑘𝑘 = − 𝑘𝑘𝑘𝑘
𝜇𝜇 𝑰𝑰, 𝑰𝑰 = [1 0

0 1] , 𝒙𝒙 = [𝑥𝑥 𝑦𝑦]𝑇𝑇,        𝛥𝛥1 = 𝑋𝑋0 − 𝐿𝐿1,

𝜇𝜇 = √𝑥𝑥2 + 𝑦𝑦2 
 

(8) 

Here, 𝛥𝛥1 represents the static extension of horizontal spring 𝐾𝐾1 in the static state defined 
by Equation (1). The force 𝑓𝑓𝑏𝑏𝑏𝑏  denotes the reaction force from the beam to the lumped 
mass 2𝑀𝑀. The nonlinearity is given by 𝜇𝜇 which describes the oblique position of the 
spring, k  and damper, c. 
 
On the interaction section 𝜉𝜉 = 0 between the beam and the nonlinear suspension unit, a 
dynamic equilibrium condition and a geometrical constraint condition are required, i.e. 
 
Equilibrium: 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 = 0, − 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓, (9) 

Geometrical constraint: 𝑌𝑌(0, 𝑡𝑡) = 𝑦𝑦(𝑡𝑡), (10) 

   

which, when Equation (3) is used, is written in the mode form  
 
 𝒀𝒀0𝜱𝜱 = 𝑦𝑦, 𝒀𝒀0 = 𝒀𝒀(0) (11) 

Equation (1) to (11) give the governing equations describing the dynamics of the 
integrated interaction system.  
 
 
2.1.3  Non- dimensional dynamic equations 
 
To derive the non-dimensional equations of the system, the following non-dimensional 
parameters are introduced 
 

 (9)

Geometrical constraint:                       Y(0,t) = y(t), (10)
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which, when Equation (3) is used, is written in the mode form 
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Substituting Equation (3) into Equation (2) and using the orthogonal relationships (5), we 
obtain the following mode equation describing the beam motion  
 
 𝒎𝒎�̈�𝜱 + 𝒌𝒌𝜱𝜱 = 𝒀𝒀𝑇𝑇(0)𝑓𝑓𝑏𝑏𝑏𝑏 + 𝒀𝒀𝑇𝑇(𝜉𝜉0)𝐹𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺0 𝑡𝑡,

𝒎𝒎 = diag(𝑀𝑀𝑛𝑛𝑛𝑛), 𝒌𝒌 = diag(𝐾𝐾𝑛𝑛𝑛𝑛), 𝜦𝜦2 = diag(Ω̂𝑛𝑛
2 ) 

(6) 

 
 
2.1.2  Dynamic equilibrium equations of the nonlinear supporting unit 
 
The dynamic equilibrium equation of the nonlinear supporting unit is 
 
 𝑴𝑴�̈�𝒙 + (𝑪𝑪 + 𝑪𝑪𝑐𝑐)�̇�𝒙 + (𝑲𝑲 + 𝑲𝑲𝑘𝑘)𝒙𝒙 = [𝐾𝐾1𝛥𝛥1

𝑓𝑓𝑏𝑏𝑏𝑏
], (7) 

where 
 
 𝑴𝑴 = [𝑚𝑚 0

0 𝑀𝑀] , 𝑪𝑪 = [𝐶𝐶1 0
0 𝐶𝐶] ,         𝑪𝑪𝑐𝑐 = 𝑐𝑐

𝜇𝜇2 𝒙𝒙𝒙𝒙𝑇𝑇,

𝑲𝑲 = [𝐾𝐾1 + 𝑘𝑘 0
0 𝐾𝐾 + 𝑘𝑘] ,

𝑲𝑲𝑘𝑘 = − 𝑘𝑘𝑘𝑘
𝜇𝜇 𝑰𝑰, 𝑰𝑰 = [1 0

0 1] , 𝒙𝒙 = [𝑥𝑥 𝑦𝑦]𝑇𝑇,        𝛥𝛥1 = 𝑋𝑋0 − 𝐿𝐿1,

𝜇𝜇 = √𝑥𝑥2 + 𝑦𝑦2 
 

(8) 

Here, 𝛥𝛥1 represents the static extension of horizontal spring 𝐾𝐾1 in the static state defined 
by Equation (1). The force 𝑓𝑓𝑏𝑏𝑏𝑏  denotes the reaction force from the beam to the lumped 
mass 2𝑀𝑀. The nonlinearity is given by 𝜇𝜇 which describes the oblique position of the 
spring, k  and damper, c. 
 
On the interaction section 𝜉𝜉 = 0 between the beam and the nonlinear suspension unit, a 
dynamic equilibrium condition and a geometrical constraint condition are required, i.e. 
 
Equilibrium: 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 = 0, − 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓, (9) 

Geometrical constraint: 𝑌𝑌(0, 𝑡𝑡) = 𝑦𝑦(𝑡𝑡), (10) 

   

which, when Equation (3) is used, is written in the mode form  
 
 𝒀𝒀0𝜱𝜱 = 𝑦𝑦, 𝒀𝒀0 = 𝒀𝒀(0) (11) 

Equation (1) to (11) give the governing equations describing the dynamics of the 
integrated interaction system.  
 
 
2.1.3  Non- dimensional dynamic equations 
 
To derive the non-dimensional equations of the system, the following non-dimensional 
parameters are introduced 
 

                                        (11)

Equation (1) to (11) give the governing equations describing the dynamics of 
the integrated interaction system. 

2.1.3  Non- dimensional dynamic equations

To derive the non-dimensional equations of the system, the following non-
dimensional parameters are introduced
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𝑀𝑀 , 𝜔𝜔 = √𝜔𝜔𝑘𝑘
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𝛺𝛺 ,  �̃�𝛺𝐾𝐾 = 𝛺𝛺𝐾𝐾/𝛺𝛺, 

�̄�𝐹0 = 𝐹𝐹0
𝑀𝑀𝛺𝛺2 𝑙𝑙 ,  �̄�𝑓1 = �̄�𝐾1�̄�𝛥1,  �̄�𝑓 = 𝑓𝑓𝑠𝑠𝑠𝑠

𝑀𝑀𝛺𝛺2 𝑙𝑙 ,  �̄�𝒎 = 𝒎𝒎
𝑀𝑀 ,  �̄�𝜱 = 𝜱𝜱

𝑙𝑙 , �̄�𝜦2 = 𝜦𝜦2/𝛺𝛺0
2. 

(12) 

 
The dynamic equilibrium equation and boundary conditions of beam structure are 
 
 
 
where 

�̄�𝒎�̈̄�𝜱 + �̄�𝒎�̄�𝜦2�̄�𝜱 = 𝑹𝑹�̄�𝒇 + �̄�𝑭0, 
 
 

𝑹𝑹 = [𝟎𝟎 −𝒀𝒀0
𝑇𝑇], �̄�𝑭0 = 𝒀𝒀𝐹𝐹

𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ , 𝒀𝒀𝐹𝐹 = 𝒀𝒀(𝜉𝜉0), 𝒀𝒀0�̄�𝜱 = �̄�𝑦 

(13) 

 
The dynamic equilibrium equation of the nonlinear supporting unit is 
 
 �̄�𝑴�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]𝒒𝒒 = �̄�𝒇, (14) 

       
 where  
 �̄�𝑴 = [�̄�𝑚 0

0 1] , �̄�𝝎 = [�̄�𝜔 0
0 �̄�𝛺] , 𝑬𝑬 = [𝐸𝐸1 0

0 𝛦𝛦] , 𝑰𝑰 = [1 0
0 1] , 𝑰𝑰1

= [1 0
0 0], 

𝒒𝒒 = [𝑞𝑞1
𝑞𝑞2

] = [�̄�𝑥
�̄�𝑦] ,

(15) 

 (12)

The dynamic equilibrium equation and boundary conditions of beam structure 
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                                             (13)
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 �̄�𝑥 = 𝑥𝑥
𝑙𝑙 ,  �̄�𝑥0 = 𝑥𝑥0

𝑙𝑙 ,  �̄�𝑦 = 𝑦𝑦
𝑙𝑙 ,  �̄�𝛥1 = 𝛥𝛥1

𝑙𝑙 ,  �̄�𝛥 = 𝛥𝛥
𝑙𝑙 ,  �̄�𝑡 = 𝛺𝛺0𝑡𝑡,  �̄�𝑌 = 𝑌𝑌

𝑙𝑙 ,  �̄�𝜉 = 𝜉𝜉
𝑙𝑙 ,  �̄�𝑆 = 𝑆𝑆

𝑙𝑙 , 

𝜔𝜔 = √(𝑘𝑘 + 𝐾𝐾1)/𝑚𝑚,  �̄�𝜔 = 𝛺𝛺0
𝜔𝜔 ,  𝐸𝐸1 = 𝐶𝐶1

2𝑚𝑚𝜔𝜔 ,  �̄�𝑚 = 𝑚𝑚
𝑀𝑀 ,  �̄�𝜌 = 𝜌𝜌𝑙𝑙

𝑀𝑀 , 𝜔𝜔 = √𝜔𝜔𝑘𝑘
2 + 𝜔𝜔1

2, 

𝜔𝜔𝑘𝑘 = √ 𝑘𝑘
𝑚𝑚 ,  𝜔𝜔1 = √𝐾𝐾1

𝑚𝑚 ,  �̄�𝜔𝑘𝑘 = 𝜔𝜔𝑘𝑘
𝛺𝛺0

,  �̄�𝜔1 = 𝜔𝜔1
𝛺𝛺0

,   �̃�𝜔𝑘𝑘 = 𝜔𝜔𝑘𝑘
𝜔𝜔 ,   �̃�𝜔1 = 𝜔𝜔1

𝜔𝜔 , 

�̃�𝐾1 = 𝐾𝐾1
𝑘𝑘 + 𝐾𝐾1

,  �̄�𝐾1 = �̄�𝑚�̃�𝐾1�̄�𝜔2 = 𝐾𝐾1𝛺𝛺0
2

𝑀𝑀𝜔𝜔4 ,  �̄�𝑘 = �̃�𝑘𝐾𝐾�̄�𝛺2 = �̄�𝑚�̃�𝑘1�̄�𝜔2 = 𝑘𝑘𝛺𝛺0
2/(𝑀𝑀𝜔𝜔4 ), 

�̃�𝑘1 = 𝑘𝑘
𝑘𝑘 + 𝐾𝐾1

, �̃�𝑘𝐾𝐾 = 𝑘𝑘
𝑘𝑘 + 𝐾𝐾 ,  �̃�𝑐1 = 𝑐𝑐

𝐶𝐶1
,  �̃�𝑐𝐾𝐾 = 𝑐𝑐

𝐶𝐶 ,  �̄�𝜀 = �̃�𝑐𝐾𝐾𝛦𝛦�̄�𝛺 = �̄�𝑚�̃�𝑐1𝐸𝐸1�̄�𝜔

= 𝑐𝑐𝛺𝛺0
2𝑀𝑀𝜔𝜔2 , 

𝛺𝛺 = √(𝑘𝑘 + 𝐾𝐾)/𝑀𝑀,  �̄�𝛺 = 𝛺𝛺0
𝛺𝛺 , 𝛦𝛦 = 𝐶𝐶

2𝑀𝑀𝛺𝛺 , �̄�𝑔 = 𝑔𝑔
𝛺𝛺0

2𝑙𝑙 , 𝛺𝛺 = √𝛺𝛺𝑘𝑘
2 + 𝛺𝛺𝐾𝐾

2 , 

𝛺𝛺𝑘𝑘 = √𝑘𝑘/𝑀𝑀,  𝛺𝛺𝐾𝐾 = √𝐾𝐾/𝑀𝑀,  �̄�𝛺𝑘𝑘 = 𝛺𝛺𝑘𝑘
𝛺𝛺0

,  �̄�𝛺𝐾𝐾 = 𝛺𝛺𝐾𝐾
𝛺𝛺0

,  �̃�𝛺𝑘𝑘 = 𝛺𝛺𝑘𝑘
𝛺𝛺 ,  �̃�𝛺𝐾𝐾 = 𝛺𝛺𝐾𝐾/𝛺𝛺, 

�̄�𝐹0 = 𝐹𝐹0
𝑀𝑀𝛺𝛺2 𝑙𝑙 ,  �̄�𝑓1 = �̄�𝐾1�̄�𝛥1,  �̄�𝑓 = 𝑓𝑓𝑠𝑠𝑠𝑠

𝑀𝑀𝛺𝛺2 𝑙𝑙 ,  �̄�𝒎 = 𝒎𝒎
𝑀𝑀 ,  �̄�𝜱 = 𝜱𝜱

𝑙𝑙 , �̄�𝜦2 = 𝜦𝜦2/𝛺𝛺0
2. 

(12) 

 
The dynamic equilibrium equation and boundary conditions of beam structure are 
 
 
 
where 

�̄�𝒎�̈̄�𝜱 + �̄�𝒎�̄�𝜦2�̄�𝜱 = 𝑹𝑹�̄�𝒇 + �̄�𝑭0, 
 
 

𝑹𝑹 = [𝟎𝟎 −𝒀𝒀0
𝑇𝑇], �̄�𝑭0 = 𝒀𝒀𝐹𝐹

𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ , 𝒀𝒀𝐹𝐹 = 𝒀𝒀(𝜉𝜉0), 𝒀𝒀0�̄�𝜱 = �̄�𝑦 

(13) 

 
The dynamic equilibrium equation of the nonlinear supporting unit is 
 
 �̄�𝑴�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]𝒒𝒒 = �̄�𝒇, (14) 

       
 where  
 �̄�𝑴 = [�̄�𝑚 0

0 1] , �̄�𝝎 = [�̄�𝜔 0
0 �̄�𝛺] , 𝑬𝑬 = [𝐸𝐸1 0

0 𝛦𝛦] , 𝑰𝑰 = [1 0
0 1] , 𝑰𝑰1

= [1 0
0 0], 

𝒒𝒒 = [𝑞𝑞1
𝑞𝑞2

] = [�̄�𝑥
�̄�𝑦] ,

(15) 

              (14)

where 
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 �̄�𝑥 = 𝑥𝑥
𝑙𝑙 ,  �̄�𝑥0 = 𝑥𝑥0

𝑙𝑙 ,  �̄�𝑦 = 𝑦𝑦
𝑙𝑙 ,  �̄�𝛥1 = 𝛥𝛥1

𝑙𝑙 ,  �̄�𝛥 = 𝛥𝛥
𝑙𝑙 ,  �̄�𝑡 = 𝛺𝛺0𝑡𝑡,  �̄�𝑌 = 𝑌𝑌

𝑙𝑙 ,  �̄�𝜉 = 𝜉𝜉
𝑙𝑙 ,  �̄�𝑆 = 𝑆𝑆

𝑙𝑙 , 

𝜔𝜔 = √(𝑘𝑘 + 𝐾𝐾1)/𝑚𝑚,  �̄�𝜔 = 𝛺𝛺0
𝜔𝜔 ,  𝐸𝐸1 = 𝐶𝐶1

2𝑚𝑚𝜔𝜔 ,  �̄�𝑚 = 𝑚𝑚
𝑀𝑀 ,  �̄�𝜌 = 𝜌𝜌𝑙𝑙

𝑀𝑀 , 𝜔𝜔 = √𝜔𝜔𝑘𝑘
2 + 𝜔𝜔1

2, 

𝜔𝜔𝑘𝑘 = √ 𝑘𝑘
𝑚𝑚 ,  𝜔𝜔1 = √𝐾𝐾1

𝑚𝑚 ,  �̄�𝜔𝑘𝑘 = 𝜔𝜔𝑘𝑘
𝛺𝛺0

,  �̄�𝜔1 = 𝜔𝜔1
𝛺𝛺0

,   �̃�𝜔𝑘𝑘 = 𝜔𝜔𝑘𝑘
𝜔𝜔 ,   �̃�𝜔1 = 𝜔𝜔1

𝜔𝜔 , 

�̃�𝐾1 = 𝐾𝐾1
𝑘𝑘 + 𝐾𝐾1

,  �̄�𝐾1 = �̄�𝑚�̃�𝐾1�̄�𝜔2 = 𝐾𝐾1𝛺𝛺0
2

𝑀𝑀𝜔𝜔4 ,  �̄�𝑘 = �̃�𝑘𝐾𝐾�̄�𝛺2 = �̄�𝑚�̃�𝑘1�̄�𝜔2 = 𝑘𝑘𝛺𝛺0
2/(𝑀𝑀𝜔𝜔4 ), 

�̃�𝑘1 = 𝑘𝑘
𝑘𝑘 + 𝐾𝐾1

, �̃�𝑘𝐾𝐾 = 𝑘𝑘
𝑘𝑘 + 𝐾𝐾 ,  �̃�𝑐1 = 𝑐𝑐

𝐶𝐶1
,  �̃�𝑐𝐾𝐾 = 𝑐𝑐

𝐶𝐶 ,  �̄�𝜀 = �̃�𝑐𝐾𝐾𝛦𝛦�̄�𝛺 = �̄�𝑚�̃�𝑐1𝐸𝐸1�̄�𝜔

= 𝑐𝑐𝛺𝛺0
2𝑀𝑀𝜔𝜔2 , 

𝛺𝛺 = √(𝑘𝑘 + 𝐾𝐾)/𝑀𝑀,  �̄�𝛺 = 𝛺𝛺0
𝛺𝛺 , 𝛦𝛦 = 𝐶𝐶

2𝑀𝑀𝛺𝛺 , �̄�𝑔 = 𝑔𝑔
𝛺𝛺0

2𝑙𝑙 , 𝛺𝛺 = √𝛺𝛺𝑘𝑘
2 + 𝛺𝛺𝐾𝐾

2 , 

𝛺𝛺𝑘𝑘 = √𝑘𝑘/𝑀𝑀,  𝛺𝛺𝐾𝐾 = √𝐾𝐾/𝑀𝑀,  �̄�𝛺𝑘𝑘 = 𝛺𝛺𝑘𝑘
𝛺𝛺0

,  �̄�𝛺𝐾𝐾 = 𝛺𝛺𝐾𝐾
𝛺𝛺0

,  �̃�𝛺𝑘𝑘 = 𝛺𝛺𝑘𝑘
𝛺𝛺 ,  �̃�𝛺𝐾𝐾 = 𝛺𝛺𝐾𝐾/𝛺𝛺, 

�̄�𝐹0 = 𝐹𝐹0
𝑀𝑀𝛺𝛺2 𝑙𝑙 ,  �̄�𝑓1 = �̄�𝐾1�̄�𝛥1,  �̄�𝑓 = 𝑓𝑓𝑠𝑠𝑠𝑠

𝑀𝑀𝛺𝛺2 𝑙𝑙 ,  �̄�𝒎 = 𝒎𝒎
𝑀𝑀 ,  �̄�𝜱 = 𝜱𝜱

𝑙𝑙 , �̄�𝜦2 = 𝜦𝜦2/𝛺𝛺0
2. 

(12) 

 
The dynamic equilibrium equation and boundary conditions of beam structure are 
 
 
 
where 

�̄�𝒎�̈̄�𝜱 + �̄�𝒎�̄�𝜦2�̄�𝜱 = 𝑹𝑹�̄�𝒇 + �̄�𝑭0, 
 
 

𝑹𝑹 = [𝟎𝟎 −𝒀𝒀0
𝑇𝑇], �̄�𝑭0 = 𝒀𝒀𝐹𝐹

𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ , 𝒀𝒀𝐹𝐹 = 𝒀𝒀(𝜉𝜉0), 𝒀𝒀0�̄�𝜱 = �̄�𝑦 

(13) 

 
The dynamic equilibrium equation of the nonlinear supporting unit is 
 
 �̄�𝑴�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]𝒒𝒒 = �̄�𝒇, (14) 

       
 where  
 �̄�𝑴 = [�̄�𝑚 0

0 1] , �̄�𝝎 = [�̄�𝜔 0
0 �̄�𝛺] , 𝑬𝑬 = [𝐸𝐸1 0

0 𝛦𝛦] , 𝑰𝑰 = [1 0
0 1] , 𝑰𝑰1

= [1 0
0 0], 

𝒒𝒒 = [𝑞𝑞1
𝑞𝑞2

] = [�̄�𝑥
�̄�𝑦] ,

(15)                (15)
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𝜺𝜺(𝒒𝒒) = 𝜀𝜀̄
�̄�𝜇2 𝒒𝒒𝒒𝒒𝑇𝑇, 𝒌𝒌(𝒒𝒒) = − �̄�𝑘

�̄�𝜇 𝑰𝑰, �̄�𝒇 = [0�̄�𝑓] , 𝒌𝒌1(𝒒𝒒) = − �̄�𝑓1
𝑞𝑞1
𝑰𝑰1, �̄�𝜇

= √𝒒𝒒𝑇𝑇𝒒𝒒 
 
Here, 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) represent a nonlinear damping matrix and a nonlinear stiffness 
matrix of the system, respectively. 
 
 
2.1.4  Integrated coupling matrix equation 
 
Combining Equation (13) and (14), the integrated coupling equation of the system in 
matrix form is obtained 
 
 �̑�𝑴�̈�𝑸 + (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)�̇�𝑸 + (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸 = �̑�𝑭0 (16) 

 
 
 
where 
 𝑸𝑸 = [𝑞𝑞1�̄�𝜱] , 𝒒𝒒 = 𝑻𝑻𝑸𝑸, �̑�𝑴 = [�̄�𝑚 𝟎𝟎𝑇𝑇

𝟎𝟎 �̄�𝒀 + �̄�𝒎] , 𝑻𝑻 = [1 0
𝟎𝟎 𝒀𝒀0] , �̑�𝑭0 = [ 0�̄�𝑭0], 

 
�̑�𝑪𝑁𝑁 = 2𝑻𝑻𝑇𝑇𝜺𝜺(𝒒𝒒)𝑻𝑻, �̑�𝑪𝐿𝐿 = 2𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎𝑬𝑬𝑻𝑻 

�̑�𝑲𝐿𝐿 = {diag(0, �̄�𝐦�̄�𝜦2) + 𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎2𝑻𝑻}, �̑�𝑲𝑁𝑁 = 𝑻𝑻𝑇𝑇[𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]𝑻𝑻 

(17) 

 
The total degree of freedom of this system is 1+N where N is the mode number chosen 
to describe the beam motion.  Equation (16) can be rewritten in the state space form 
  
 { �̇�𝑸 = 𝑷𝑷

�̇�𝑷 = �̑�𝑴−1{�̑�𝑭0 − (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)𝑷𝑷 − (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸} 
(18) 

 
Here, the super-indices “L” and “N” identify the linear parts and nonlinear parts of the 
matrices, respectively. The nonlinearity is given by by 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) which represents a 
nonlinear damping matrix and a nonlinear stiffness matrix as shown in Equation (14) and 
Equation (15). The coupling matrix in Equation (16) describes the dynamics of the 
integrated interaction system. Based on this set of equations, we can investigate the 
coupling mechanism between the elastic beam and the nonlinear suspension unit. 
 
2.2  Interaction analysis 
 
2.2.1  Equation governing the influence of beam motions on nonlinear suspension 
system 
 
From Equation (13), it follows that 
 �̈̄�𝜱 + �̄�𝜦2�̄�𝜱 = �̄�𝒎−1𝑹𝑹�̄�𝒇 + �̄�𝒎−1�̄�𝑭0, 𝑹𝑹 = [𝟎𝟎 −𝒀𝒀0𝑇𝑇], (19) 

 
which, when pre-multiplied by 𝒀𝒀0, gives  

Here, ε(q) and k(q) represent a nonlinear damping matrix and a nonlinear 
stiffness matrix of the system, respectively.

2.1.4  Integrated coupling matrix equation

Combining Equation (13) and (14), the integrated coupling equation of the 
system in matrix form is obtained
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𝜺𝜺(𝒒𝒒) = 𝜀𝜀̄
�̄�𝜇2 𝒒𝒒𝒒𝒒𝑇𝑇, 𝒌𝒌(𝒒𝒒) = − �̄�𝑘

�̄�𝜇 𝑰𝑰, �̄�𝒇 = [0�̄�𝑓] , 𝒌𝒌1(𝒒𝒒) = − �̄�𝑓1
𝑞𝑞1
𝑰𝑰1, �̄�𝜇

= √𝒒𝒒𝑇𝑇𝒒𝒒 
 
Here, 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) represent a nonlinear damping matrix and a nonlinear stiffness 
matrix of the system, respectively. 
 
 
2.1.4  Integrated coupling matrix equation 
 
Combining Equation (13) and (14), the integrated coupling equation of the system in 
matrix form is obtained 
 
 �̑�𝑴�̈�𝑸 + (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)�̇�𝑸 + (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸 = �̑�𝑭0 (16) 

 
 
 
where 
 𝑸𝑸 = [𝑞𝑞1�̄�𝜱] , 𝒒𝒒 = 𝑻𝑻𝑸𝑸, �̑�𝑴 = [�̄�𝑚 𝟎𝟎𝑇𝑇

𝟎𝟎 �̄�𝒀 + �̄�𝒎] , 𝑻𝑻 = [1 0
𝟎𝟎 𝒀𝒀0] , �̑�𝑭0 = [ 0�̄�𝑭0], 

 
�̑�𝑪𝑁𝑁 = 2𝑻𝑻𝑇𝑇𝜺𝜺(𝒒𝒒)𝑻𝑻, �̑�𝑪𝐿𝐿 = 2𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎𝑬𝑬𝑻𝑻 

�̑�𝑲𝐿𝐿 = {diag(0, �̄�𝐦�̄�𝜦2) + 𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎2𝑻𝑻}, �̑�𝑲𝑁𝑁 = 𝑻𝑻𝑇𝑇[𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]𝑻𝑻 

(17) 

 
The total degree of freedom of this system is 1+N where N is the mode number chosen 
to describe the beam motion.  Equation (16) can be rewritten in the state space form 
  
 { �̇�𝑸 = 𝑷𝑷

�̇�𝑷 = �̑�𝑴−1{�̑�𝑭0 − (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)𝑷𝑷 − (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸} 
(18) 

 
Here, the super-indices “L” and “N” identify the linear parts and nonlinear parts of the 
matrices, respectively. The nonlinearity is given by by 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) which represents a 
nonlinear damping matrix and a nonlinear stiffness matrix as shown in Equation (14) and 
Equation (15). The coupling matrix in Equation (16) describes the dynamics of the 
integrated interaction system. Based on this set of equations, we can investigate the 
coupling mechanism between the elastic beam and the nonlinear suspension unit. 
 
2.2  Interaction analysis 
 
2.2.1  Equation governing the influence of beam motions on nonlinear suspension 
system 
 
From Equation (13), it follows that 
 �̈̄�𝜱 + �̄�𝜦2�̄�𝜱 = �̄�𝒎−1𝑹𝑹�̄�𝒇 + �̄�𝒎−1�̄�𝑭0, 𝑹𝑹 = [𝟎𝟎 −𝒀𝒀0𝑇𝑇], (19) 

 
which, when pre-multiplied by 𝒀𝒀0, gives  

                           (16)

where
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𝜺𝜺(𝒒𝒒) = 𝜀𝜀̄
�̄�𝜇2 𝒒𝒒𝒒𝒒𝑇𝑇, 𝒌𝒌(𝒒𝒒) = − �̄�𝑘

�̄�𝜇 𝑰𝑰, �̄�𝒇 = [0�̄�𝑓] , 𝒌𝒌1(𝒒𝒒) = − �̄�𝑓1
𝑞𝑞1
𝑰𝑰1, �̄�𝜇

= √𝒒𝒒𝑇𝑇𝒒𝒒 
 
Here, 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) represent a nonlinear damping matrix and a nonlinear stiffness 
matrix of the system, respectively. 
 
 
2.1.4  Integrated coupling matrix equation 
 
Combining Equation (13) and (14), the integrated coupling equation of the system in 
matrix form is obtained 
 
 �̑�𝑴�̈�𝑸 + (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)�̇�𝑸 + (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸 = �̑�𝑭0 (16) 

 
 
 
where 
 𝑸𝑸 = [𝑞𝑞1�̄�𝜱] , 𝒒𝒒 = 𝑻𝑻𝑸𝑸, �̑�𝑴 = [�̄�𝑚 𝟎𝟎𝑇𝑇

𝟎𝟎 �̄�𝒀 + �̄�𝒎] , 𝑻𝑻 = [1 0
𝟎𝟎 𝒀𝒀0] , �̑�𝑭0 = [ 0�̄�𝑭0], 

 
�̑�𝑪𝑁𝑁 = 2𝑻𝑻𝑇𝑇𝜺𝜺(𝒒𝒒)𝑻𝑻, �̑�𝑪𝐿𝐿 = 2𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎𝑬𝑬𝑻𝑻 

�̑�𝑲𝐿𝐿 = {diag(0, �̄�𝐦�̄�𝜦2) + 𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎2𝑻𝑻}, �̑�𝑲𝑁𝑁 = 𝑻𝑻𝑇𝑇[𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]𝑻𝑻 

(17) 

 
The total degree of freedom of this system is 1+N where N is the mode number chosen 
to describe the beam motion.  Equation (16) can be rewritten in the state space form 
  
 { �̇�𝑸 = 𝑷𝑷

�̇�𝑷 = �̑�𝑴−1{�̑�𝑭0 − (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)𝑷𝑷 − (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸} 
(18) 

 
Here, the super-indices “L” and “N” identify the linear parts and nonlinear parts of the 
matrices, respectively. The nonlinearity is given by by 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) which represents a 
nonlinear damping matrix and a nonlinear stiffness matrix as shown in Equation (14) and 
Equation (15). The coupling matrix in Equation (16) describes the dynamics of the 
integrated interaction system. Based on this set of equations, we can investigate the 
coupling mechanism between the elastic beam and the nonlinear suspension unit. 
 
2.2  Interaction analysis 
 
2.2.1  Equation governing the influence of beam motions on nonlinear suspension 
system 
 
From Equation (13), it follows that 
 �̈̄�𝜱 + �̄�𝜦2�̄�𝜱 = �̄�𝒎−1𝑹𝑹�̄�𝒇 + �̄�𝒎−1�̄�𝑭0, 𝑹𝑹 = [𝟎𝟎 −𝒀𝒀0𝑇𝑇], (19) 

 
which, when pre-multiplied by 𝒀𝒀0, gives  

       (17)

The total degree of freedom of this system is 1+N where N is the mode number 
chosen to describe the beam motion.  Equation (16) can be rewritten in the state 
space form
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𝜺𝜺(𝒒𝒒) = 𝜀𝜀̄
�̄�𝜇2 𝒒𝒒𝒒𝒒𝑇𝑇, 𝒌𝒌(𝒒𝒒) = − �̄�𝑘

�̄�𝜇 𝑰𝑰, �̄�𝒇 = [0�̄�𝑓] , 𝒌𝒌1(𝒒𝒒) = − �̄�𝑓1
𝑞𝑞1
𝑰𝑰1, �̄�𝜇

= √𝒒𝒒𝑇𝑇𝒒𝒒 
 
Here, 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) represent a nonlinear damping matrix and a nonlinear stiffness 
matrix of the system, respectively. 
 
 
2.1.4  Integrated coupling matrix equation 
 
Combining Equation (13) and (14), the integrated coupling equation of the system in 
matrix form is obtained 
 
 �̑�𝑴�̈�𝑸 + (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)�̇�𝑸 + (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸 = �̑�𝑭0 (16) 

 
 
 
where 
 𝑸𝑸 = [𝑞𝑞1�̄�𝜱] , 𝒒𝒒 = 𝑻𝑻𝑸𝑸, �̑�𝑴 = [�̄�𝑚 𝟎𝟎𝑇𝑇

𝟎𝟎 �̄�𝒀 + �̄�𝒎] , 𝑻𝑻 = [1 0
𝟎𝟎 𝒀𝒀0] , �̑�𝑭0 = [ 0�̄�𝑭0], 

 
�̑�𝑪𝑁𝑁 = 2𝑻𝑻𝑇𝑇𝜺𝜺(𝒒𝒒)𝑻𝑻, �̑�𝑪𝐿𝐿 = 2𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎𝑬𝑬𝑻𝑻 

�̑�𝑲𝐿𝐿 = {diag(0, �̄�𝐦�̄�𝜦2) + 𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎2𝑻𝑻}, �̑�𝑲𝑁𝑁 = 𝑻𝑻𝑇𝑇[𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]𝑻𝑻 

(17) 

 
The total degree of freedom of this system is 1+N where N is the mode number chosen 
to describe the beam motion.  Equation (16) can be rewritten in the state space form 
  
 { �̇�𝑸 = 𝑷𝑷

�̇�𝑷 = �̑�𝑴−1{�̑�𝑭0 − (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)𝑷𝑷 − (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸} 
(18) 

 
Here, the super-indices “L” and “N” identify the linear parts and nonlinear parts of the 
matrices, respectively. The nonlinearity is given by by 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) which represents a 
nonlinear damping matrix and a nonlinear stiffness matrix as shown in Equation (14) and 
Equation (15). The coupling matrix in Equation (16) describes the dynamics of the 
integrated interaction system. Based on this set of equations, we can investigate the 
coupling mechanism between the elastic beam and the nonlinear suspension unit. 
 
2.2  Interaction analysis 
 
2.2.1  Equation governing the influence of beam motions on nonlinear suspension 
system 
 
From Equation (13), it follows that 
 �̈̄�𝜱 + �̄�𝜦2�̄�𝜱 = �̄�𝒎−1𝑹𝑹�̄�𝒇 + �̄�𝒎−1�̄�𝑭0, 𝑹𝑹 = [𝟎𝟎 −𝒀𝒀0𝑇𝑇], (19) 

 
which, when pre-multiplied by 𝒀𝒀0, gives  

                         (18)

Here, the super-indices “L” and “N” identify the linear parts and nonlinear 
parts of the matrices, respectively. The nonlinearity is given by by ε(q) and k(q) 
which represents a nonlinear damping matrix and a nonlinear stiffness matrix 
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as shown in Equation (14) and Equation (15). The coupling matrix in Equation 
(16) describes the dynamics of the integrated interaction system. Based on 
this set of equations, we can investigate the coupling mechanism between the 
elastic beam and the nonlinear suspension unit.

2.2  Interaction Analysis

2.2.1  Equation governing the influence of beam motions on nonlinear 
suspension system

From Equation (13), it follows that
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𝜺𝜺(𝒒𝒒) = 𝜀𝜀̄
�̄�𝜇2 𝒒𝒒𝒒𝒒𝑇𝑇, 𝒌𝒌(𝒒𝒒) = − �̄�𝑘

�̄�𝜇 𝑰𝑰, �̄�𝒇 = [0�̄�𝑓] , 𝒌𝒌1(𝒒𝒒) = − �̄�𝑓1
𝑞𝑞1
𝑰𝑰1, �̄�𝜇

= √𝒒𝒒𝑇𝑇𝒒𝒒 
 
Here, 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) represent a nonlinear damping matrix and a nonlinear stiffness 
matrix of the system, respectively. 
 
 
2.1.4  Integrated coupling matrix equation 
 
Combining Equation (13) and (14), the integrated coupling equation of the system in 
matrix form is obtained 
 
 �̑�𝑴�̈�𝑸 + (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)�̇�𝑸 + (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸 = �̑�𝑭0 (16) 

 
 
 
where 
 𝑸𝑸 = [𝑞𝑞1�̄�𝜱] , 𝒒𝒒 = 𝑻𝑻𝑸𝑸, �̑�𝑴 = [�̄�𝑚 𝟎𝟎𝑇𝑇

𝟎𝟎 �̄�𝒀 + �̄�𝒎] , 𝑻𝑻 = [1 0
𝟎𝟎 𝒀𝒀0] , �̑�𝑭0 = [ 0�̄�𝑭0], 

 
�̑�𝑪𝑁𝑁 = 2𝑻𝑻𝑇𝑇𝜺𝜺(𝒒𝒒)𝑻𝑻, �̑�𝑪𝐿𝐿 = 2𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎𝑬𝑬𝑻𝑻 

�̑�𝑲𝐿𝐿 = {diag(0, �̄�𝐦�̄�𝜦2) + 𝑻𝑻𝑇𝑇�̄�𝑴�̄�𝝎2𝑻𝑻}, �̑�𝑲𝑁𝑁 = 𝑻𝑻𝑇𝑇[𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]𝑻𝑻 

(17) 

 
The total degree of freedom of this system is 1+N where N is the mode number chosen 
to describe the beam motion.  Equation (16) can be rewritten in the state space form 
  
 { �̇�𝑸 = 𝑷𝑷

�̇�𝑷 = �̑�𝑴−1{�̑�𝑭0 − (�̑�𝑪𝐿𝐿 + �̑�𝑪𝑁𝑁)𝑷𝑷 − (�̑�𝑲𝐿𝐿 + �̑�𝑲𝑁𝑁)𝑸𝑸} 
(18) 

 
Here, the super-indices “L” and “N” identify the linear parts and nonlinear parts of the 
matrices, respectively. The nonlinearity is given by by 𝜺𝜺(𝒒𝒒) and 𝒌𝒌(𝒒𝒒) which represents a 
nonlinear damping matrix and a nonlinear stiffness matrix as shown in Equation (14) and 
Equation (15). The coupling matrix in Equation (16) describes the dynamics of the 
integrated interaction system. Based on this set of equations, we can investigate the 
coupling mechanism between the elastic beam and the nonlinear suspension unit. 
 
2.2  Interaction analysis 
 
2.2.1  Equation governing the influence of beam motions on nonlinear suspension 
system 
 
From Equation (13), it follows that 
 �̈̄�𝜱 + �̄�𝜦2�̄�𝜱 = �̄�𝒎−1𝑹𝑹�̄�𝒇 + �̄�𝒎−1�̄�𝑭0, 𝑹𝑹 = [𝟎𝟎 −𝒀𝒀0𝑇𝑇], (19) 

 
which, when pre-multiplied by 𝒀𝒀0, gives  

                  (19)

which, when pre-multiplied by Y0, gives 
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 𝒀𝒀0�̈̄�𝜱 + 𝒀𝒀0�̄�𝜦2�̄�𝜱 = 𝒀𝒀0�̄�𝒎−1𝑹𝑹�̄�𝒇 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0
= −𝑚𝑚𝑏𝑏

−1�̄�𝑓 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0, 𝑚𝑚𝑏𝑏
−1

= 𝒀𝒀0�̄�𝒎−1𝒀𝒀0
𝑇𝑇 

(20) 

 
Since  
 

𝑚𝑚𝑏𝑏
−1 = 𝒀𝒀0�̄�𝒎−1𝒀𝒀0

𝑇𝑇 = ∑ �̄�𝑀𝑛𝑛𝑛𝑛
−1

𝑁𝑁

𝑛𝑛=1
𝑌𝑌𝑛𝑛0

2 > 0, 
(21) 

 
we have  
 
 �̄�𝑓 = 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏𝒀𝒀0�̈̄�𝜱 − 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝜦2�̄�𝜱

= 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏�̈̄�𝑦 − 𝑘𝑘𝑏𝑏(�̄�𝜱)�̄�𝑦, 
(22) 

 
 
 
where              
 

𝑘𝑘𝑏𝑏(�̄�𝜱) = 𝑚𝑚𝑏𝑏
𝒀𝒀0�̄�𝜦2�̄�𝜱

𝒀𝒀0�̄�𝜱 = 𝑚𝑚𝑏𝑏 ∑ 𝑌𝑌𝑛𝑛0�̄̂�𝛺𝑛𝑛
2�̄�𝜑𝑛𝑛

𝑁𝑁
𝑛𝑛=1

∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
2 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2�̄�𝐾𝑛𝑛𝑛𝑛/�̄�𝑀𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑛𝑛0
−2�̄�𝐾𝑛𝑛𝑛𝑛. (26) 

 
Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
structure. The equation of natural frequency is 
 

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛
𝑀𝑀𝑛𝑛𝑛𝑛

 (27) 

 

                    (20)

Since 
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𝑇𝑇 

(20) 

 
Since  
 

𝑚𝑚𝑏𝑏
−1 = 𝒀𝒀0�̄�𝒎−1𝒀𝒀0

𝑇𝑇 = ∑ �̄�𝑀𝑛𝑛𝑛𝑛
−1

𝑁𝑁

𝑛𝑛=1
𝑌𝑌𝑛𝑛0

2 > 0, 
(21) 

 
we have  
 
 �̄�𝑓 = 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏𝒀𝒀0�̈̄�𝜱 − 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝜦2�̄�𝜱

= 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏�̈̄�𝑦 − 𝑘𝑘𝑏𝑏(�̄�𝜱)�̄�𝑦, 
(22) 

 
 
 
where              
 

𝑘𝑘𝑏𝑏(�̄�𝜱) = 𝑚𝑚𝑏𝑏
𝒀𝒀0�̄�𝜦2�̄�𝜱

𝒀𝒀0�̄�𝜱 = 𝑚𝑚𝑏𝑏 ∑ 𝑌𝑌𝑛𝑛0�̄̂�𝛺𝑛𝑛
2�̄�𝜑𝑛𝑛

𝑁𝑁
𝑛𝑛=1

∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
2 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2�̄�𝐾𝑛𝑛𝑛𝑛/�̄�𝑀𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑛𝑛0
−2�̄�𝐾𝑛𝑛𝑛𝑛. (26) 

 
Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
structure. The equation of natural frequency is 
 

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛
𝑀𝑀𝑛𝑛𝑛𝑛

 (27) 

 

                            (21)

we have 
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 𝒀𝒀0�̈̄�𝜱 + 𝒀𝒀0�̄�𝜦2�̄�𝜱 = 𝒀𝒀0�̄�𝒎−1𝑹𝑹�̄�𝒇 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0
= −𝑚𝑚𝑏𝑏

−1�̄�𝑓 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0, 𝑚𝑚𝑏𝑏
−1

= 𝒀𝒀0�̄�𝒎−1𝒀𝒀0
𝑇𝑇 

(20) 

 
Since  
 

𝑚𝑚𝑏𝑏
−1 = 𝒀𝒀0�̄�𝒎−1𝒀𝒀0

𝑇𝑇 = ∑ �̄�𝑀𝑛𝑛𝑛𝑛
−1

𝑁𝑁

𝑛𝑛=1
𝑌𝑌𝑛𝑛0

2 > 0, 
(21) 

 
we have  
 
 �̄�𝑓 = 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏𝒀𝒀0�̈̄�𝜱 − 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝜦2�̄�𝜱

= 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏�̈̄�𝑦 − 𝑘𝑘𝑏𝑏(�̄�𝜱)�̄�𝑦, 
(22) 

 
 
 
where              
 

𝑘𝑘𝑏𝑏(�̄�𝜱) = 𝑚𝑚𝑏𝑏
𝒀𝒀0�̄�𝜦2�̄�𝜱

𝒀𝒀0�̄�𝜱 = 𝑚𝑚𝑏𝑏 ∑ 𝑌𝑌𝑛𝑛0�̄̂�𝛺𝑛𝑛
2�̄�𝜑𝑛𝑛

𝑁𝑁
𝑛𝑛=1

∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
2 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2�̄�𝐾𝑛𝑛𝑛𝑛/�̄�𝑀𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑛𝑛0
−2�̄�𝐾𝑛𝑛𝑛𝑛. (26) 

 
Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
structure. The equation of natural frequency is 
 

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛
𝑀𝑀𝑛𝑛𝑛𝑛

 (27) 

 

                     (22)

where

 
 
Journal of Engineering and Technology 
 
 

 
ISSN: 2180-3811   Vol. 10 No. 2  July – December 2019  
 

 𝒀𝒀0�̈̄�𝜱 + 𝒀𝒀0�̄�𝜦2�̄�𝜱 = 𝒀𝒀0�̄�𝒎−1𝑹𝑹�̄�𝒇 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0
= −𝑚𝑚𝑏𝑏

−1�̄�𝑓 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0, 𝑚𝑚𝑏𝑏
−1

= 𝒀𝒀0�̄�𝒎−1𝒀𝒀0
𝑇𝑇 

(20) 

 
Since  
 

𝑚𝑚𝑏𝑏
−1 = 𝒀𝒀0�̄�𝒎−1𝒀𝒀0

𝑇𝑇 = ∑ �̄�𝑀𝑛𝑛𝑛𝑛
−1

𝑁𝑁

𝑛𝑛=1
𝑌𝑌𝑛𝑛0

2 > 0, 
(21) 

 
we have  
 
 �̄�𝑓 = 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏𝒀𝒀0�̈̄�𝜱 − 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝜦2�̄�𝜱

= 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏�̈̄�𝑦 − 𝑘𝑘𝑏𝑏(�̄�𝜱)�̄�𝑦, 
(22) 

 
 
 
where              
 

𝑘𝑘𝑏𝑏(�̄�𝜱) = 𝑚𝑚𝑏𝑏
𝒀𝒀0�̄�𝜦2�̄�𝜱

𝒀𝒀0�̄�𝜱 = 𝑚𝑚𝑏𝑏 ∑ 𝑌𝑌𝑛𝑛0�̄̂�𝛺𝑛𝑛
2�̄�𝜑𝑛𝑛

𝑁𝑁
𝑛𝑛=1

∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
2 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2�̄�𝐾𝑛𝑛𝑛𝑛/�̄�𝑀𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑛𝑛0
−2�̄�𝐾𝑛𝑛𝑛𝑛. (26) 

 
Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
structure. The equation of natural frequency is 
 

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛
𝑀𝑀𝑛𝑛𝑛𝑛

 (27) 

 

                     (23)

Substituting Equation (22) into Equation (14), we obtain
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 𝒀𝒀0�̈̄�𝜱 + 𝒀𝒀0�̄�𝜦2�̄�𝜱 = 𝒀𝒀0�̄�𝒎−1𝑹𝑹�̄�𝒇 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0
= −𝑚𝑚𝑏𝑏

−1�̄�𝑓 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0, 𝑚𝑚𝑏𝑏
−1

= 𝒀𝒀0�̄�𝒎−1𝒀𝒀0
𝑇𝑇 

(20) 

 
Since  
 

𝑚𝑚𝑏𝑏
−1 = 𝒀𝒀0�̄�𝒎−1𝒀𝒀0

𝑇𝑇 = ∑ �̄�𝑀𝑛𝑛𝑛𝑛
−1

𝑁𝑁

𝑛𝑛=1
𝑌𝑌𝑛𝑛0

2 > 0, 
(21) 

 
we have  
 
 �̄�𝑓 = 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏𝒀𝒀0�̈̄�𝜱 − 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝜦2�̄�𝜱

= 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏�̈̄�𝑦 − 𝑘𝑘𝑏𝑏(�̄�𝜱)�̄�𝑦, 
(22) 

 
 
 
where              
 

𝑘𝑘𝑏𝑏(�̄�𝜱) = 𝑚𝑚𝑏𝑏
𝒀𝒀0�̄�𝜦2�̄�𝜱

𝒀𝒀0�̄�𝜱 = 𝑚𝑚𝑏𝑏 ∑ 𝑌𝑌𝑛𝑛0�̄̂�𝛺𝑛𝑛
2�̄�𝜑𝑛𝑛

𝑁𝑁
𝑛𝑛=1

∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
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Here, mb, kb represent an additional dynamic mass and stiffness, respectively, 
which are added to the nonlinear suspension system by the beam due to their 
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dynamic interactions. fb defines a force factor at which the excitation force is 
added to the lumped mass. The values of these added parameters depend on 
the retained mode number of the beam. The added stiffness kb also involves 
the dynamic response 
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Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
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Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
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𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
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∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
2 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2�̄�𝐾𝑛𝑛𝑛𝑛/�̄�𝑀𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑛𝑛0
−2�̄�𝐾𝑛𝑛𝑛𝑛. (26) 

 
Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
structure. The equation of natural frequency is 
 

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛
𝑀𝑀𝑛𝑛𝑛𝑛

 (27) 

 

                  (26)
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 𝒀𝒀0�̈̄�𝜱 + 𝒀𝒀0�̄�𝜦2�̄�𝜱 = 𝒀𝒀0�̄�𝒎−1𝑹𝑹�̄�𝒇 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0
= −𝑚𝑚𝑏𝑏

−1�̄�𝑓 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0, 𝑚𝑚𝑏𝑏
−1

= 𝒀𝒀0�̄�𝒎−1𝒀𝒀0
𝑇𝑇 

(20) 

 
Since  
 

𝑚𝑚𝑏𝑏
−1 = 𝒀𝒀0�̄�𝒎−1𝒀𝒀0

𝑇𝑇 = ∑ �̄�𝑀𝑛𝑛𝑛𝑛
−1

𝑁𝑁

𝑛𝑛=1
𝑌𝑌𝑛𝑛0

2 > 0, 
(21) 

 
we have  
 
 �̄�𝑓 = 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏𝒀𝒀0�̈̄�𝜱 − 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝜦2�̄�𝜱

= 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏�̈̄�𝑦 − 𝑘𝑘𝑏𝑏(�̄�𝜱)�̄�𝑦, 
(22) 

 
 
 
where              
 

𝑘𝑘𝑏𝑏(�̄�𝜱) = 𝑚𝑚𝑏𝑏
𝒀𝒀0�̄�𝜦2�̄�𝜱

𝒀𝒀0�̄�𝜱 = 𝑚𝑚𝑏𝑏 ∑ 𝑌𝑌𝑛𝑛0�̄̂�𝛺𝑛𝑛
2�̄�𝜑𝑛𝑛

𝑁𝑁
𝑛𝑛=1

∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
2 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2�̄�𝐾𝑛𝑛𝑛𝑛/�̄�𝑀𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑛𝑛0
−2�̄�𝐾𝑛𝑛𝑛𝑛. (26) 

 
Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
structure. The equation of natural frequency is 
 

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛
𝑀𝑀𝑛𝑛𝑛𝑛

 (27) 
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where              
 

𝑘𝑘𝑏𝑏(�̄�𝜱) = 𝑚𝑚𝑏𝑏
𝒀𝒀0�̄�𝜦2�̄�𝜱

𝒀𝒀0�̄�𝜱 = 𝑚𝑚𝑏𝑏 ∑ 𝑌𝑌𝑛𝑛0�̄̂�𝛺𝑛𝑛
2�̄�𝜑𝑛𝑛

𝑁𝑁
𝑛𝑛=1

∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
2 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2�̄�𝐾𝑛𝑛𝑛𝑛/�̄�𝑀𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑛𝑛0
−2�̄�𝐾𝑛𝑛𝑛𝑛. (26) 

 
Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
structure. The equation of natural frequency is 
 

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛
𝑀𝑀𝑛𝑛𝑛𝑛

 (27) 

 

                                                  (27)

As the natural frequency increases, the mass decreases and vice versa.  
The value of force factor at which the excitation force is added to the lumped 
mass greatly depends on the point, ξ0, at which the excitation force is applied 
to on the beam. From Figure 2(b), at ξ0 = 1, the force factor is a positive 
value at odd numbers of retained modes and negative at even numbers of 
retained modes. The positive value defines a pulling force while the negative 
value implies a compressed force. Figure 2(c) and Figure 2(d) show graphs 
of dynamic response of mode n for the added mass and stiffness. From  
Figure 2(c), it can be seen that the additional mass, mb (φn) decreases as the 
mode number increases. However, the value of additional mass for mode 
numbers n = 3, 4, and 5 continue to have a similar value which is approximately 
0.5. From Figure 2(d), it can be seen that the additional dynamic stiffness, kb (φn) 
added to the nonlinear suspension system by the beam increases as the mode 
number increases. The increase in additional stiffness is very large from 67  
at n = 2 to 30787 at n = 5. Referring to Equation (27), increase in mode number 
means increase in the natural frequency, thus increase in the stiffness of the 
structure.
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As the natural frequency increases, the mass decreases and vice versa. The value of force 
factor at which the excitation force is added to the lumped mass greatly depends on the 
point, 𝜉𝜉0, at which the excitation force is applied to on the beam. From Figure 2(b), at 
𝜉𝜉0 = 1, the force factor is a positive value at odd numbers of retained modes and negative 
at even numbers of retained modes. The positive value defines a pulling force while the 
negative value implies a compressed force. Figure 2(c) and Figure 2(d) show graphs of 
dynamic response of mode n for the added mass and stiffness. From Figure 2(c), it can be 
seen that the additional mass, 𝑚𝑚𝑏𝑏(𝜑𝜑𝑛𝑛) decreases as the mode number increases. However, 
the value of additional mass for mode numbers  n = 3, 4, and 5 continue to have a similar 
value which is approximately 0.5. From Figure 2(d), it can be seen that the additional 
dynamic stiffness, 𝑘𝑘𝑏𝑏(𝜑𝜑𝑛𝑛)  added to the nonlinear suspension system by the beam 
increases as the mode number increases. The increase in additional stiffness is very large 
from 67 at n =2 to 30787 at n =5. Referring to Equation (27), increase in mode number 
means increase in the natural frequency, thus increase in the stiffness of the structure. 

 
Figure 2. (a) Graph of additional mass �̄�𝑚𝑏𝑏with respect to retained mode number,   

(b) Graph of force factor with respect to retained mode number, (c) Graph of added 
mass for a unit dynamic response with respect to mode number, (d) Graph of added 

stiffness for a unit dynamic response with respect to mode number 
 
The two components of stiffness forces are 
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dynamic stiffness, 𝑘𝑘𝑏𝑏(𝜑𝜑𝑛𝑛)  added to the nonlinear suspension system by the beam 
increases as the mode number increases. The increase in additional stiffness is very large 
from 67 at n =2 to 30787 at n =5. Referring to Equation (27), increase in mode number 
means increase in the natural frequency, thus increase in the stiffness of the structure. 

 
Figure 2. (a) Graph of additional mass �̄�𝑚𝑏𝑏with respect to retained mode number,   

(b) Graph of force factor with respect to retained mode number, (c) Graph of added 
mass for a unit dynamic response with respect to mode number, (d) Graph of added 

stiffness for a unit dynamic response with respect to mode number 
 
The two components of stiffness forces are 

 
(a) 

 
(b) 

 
(c)  

(d)                                     (c)                                                                               (d)
Figure 2  (a) Graph of additional mass 
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 𝒀𝒀0�̈̄�𝜱 + 𝒀𝒀0�̄�𝜦2�̄�𝜱 = 𝒀𝒀0�̄�𝒎−1𝑹𝑹�̄�𝒇 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0
= −𝑚𝑚𝑏𝑏

−1�̄�𝑓 + 𝒀𝒀0�̄�𝒎−1�̄�𝑭0, 𝑚𝑚𝑏𝑏
−1

= 𝒀𝒀0�̄�𝒎−1𝒀𝒀0
𝑇𝑇 

(20) 

 
Since  
 

𝑚𝑚𝑏𝑏
−1 = 𝒀𝒀0�̄�𝒎−1𝒀𝒀0

𝑇𝑇 = ∑ �̄�𝑀𝑛𝑛𝑛𝑛
−1

𝑁𝑁

𝑛𝑛=1
𝑌𝑌𝑛𝑛0

2 > 0, 
(21) 

 
we have  
 
 �̄�𝑓 = 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏𝒀𝒀0�̈̄�𝜱 − 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝜦2�̄�𝜱

= 𝑓𝑓𝑏𝑏�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ − 𝑚𝑚𝑏𝑏�̈̄�𝑦 − 𝑘𝑘𝑏𝑏(�̄�𝜱)�̄�𝑦, 
(22) 

 
 
 
where              
 

𝑘𝑘𝑏𝑏(�̄�𝜱) = 𝑚𝑚𝑏𝑏
𝒀𝒀0�̄�𝜦2�̄�𝜱

𝒀𝒀0�̄�𝜱 = 𝑚𝑚𝑏𝑏 ∑ 𝑌𝑌𝑛𝑛0�̄̂�𝛺𝑛𝑛
2�̄�𝜑𝑛𝑛

𝑁𝑁
𝑛𝑛=1

∑ 𝑌𝑌𝑛𝑛0�̄�𝜑𝑛𝑛
𝑁𝑁
𝑛𝑛=1

, 𝑓𝑓𝑏𝑏

= 𝑚𝑚𝑏𝑏𝒀𝒀0�̄�𝒎−1𝒀𝒀𝐹𝐹
𝑇𝑇. 

(23) 

 
Substituting Equation (22) into Equation (14), we obtain 
 
 (�̄�𝑴 + 𝒎𝒎𝑏𝑏)�̈�𝒒 + 2[�̄�𝑴�̄�𝝎𝑬𝑬 + 𝜺𝜺(𝒒𝒒)]�̇�𝒒

+ {𝒌𝒌𝑏𝑏 + [�̄�𝑴�̄�𝝎2 + 𝒌𝒌(𝒒𝒒) + 𝒌𝒌1(𝒒𝒒)]}𝒒𝒒 = 𝒇𝒇𝑏𝑏, 

𝒎𝒎𝑏𝑏 = diag(0,𝑚𝑚𝑏𝑏), 𝒌𝒌𝑏𝑏 = diag(0,𝑘𝑘𝑏𝑏), 𝒇𝒇𝑏𝑏 = [0 𝑓𝑓𝑏𝑏]𝑇𝑇�̄�𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡̄ . 

(24) 

 
Here, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝑏𝑏 represent an additional dynamic mass and stiffness, respectively, which are 
added to the nonlinear suspension system by the beam due to their dynamic interactions. 
𝑓𝑓𝑏𝑏 defines a force factor at which the excitation force is added to the lumped mass. The 
values of these added parameters depend on the retained mode number of the beam. The 
added stiffness 𝑘𝑘𝑏𝑏 also involves the dynamic response �̄�𝜱 of the beam. For a unit dynamic 
response of mode n, i.e. �̄�𝜱𝑇𝑇 = [0 ⋯ 0 �̄�𝜑𝑛𝑛 0 ⋯ 0]𝑇𝑇 , the added mass and 
stiffness are respectively obtained by Equation (25) and (26) 
 
 𝑚𝑚𝑏𝑏 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2, (25) 

 𝑘𝑘𝑏𝑏(�̄�𝜑𝑛𝑛) = 𝑚𝑚𝑏𝑏�̄̂�𝛺𝑛𝑛
2 = �̄�𝑀𝑛𝑛𝑛𝑛𝑌𝑌𝑛𝑛0

−2�̄�𝐾𝑛𝑛𝑛𝑛/�̄�𝑀𝑛𝑛𝑛𝑛 = 𝑌𝑌𝑛𝑛0
−2�̄�𝐾𝑛𝑛𝑛𝑛. (26) 

 
Figure 2(a) shows that the additional dynamic mass, �̄�𝑚𝑏𝑏  decreases as the number of 
retained mode 𝑁𝑁 increases. Each mode has a natural frequency associated with it. The 
natural frequency of the structure depends on the mass and stiffness distributions in the 
structure. The equation of natural frequency is 
 

�̂�𝛺𝑛𝑛 = √𝐾𝐾𝑛𝑛𝑛𝑛
𝑀𝑀𝑛𝑛𝑛𝑛

 (27) 

 

 with respect to retained mode number,   
(b) Graph of force factor with respect to retained mode number, (c) Graph of added 
mass for a unit dynamic response with respect to mode number, (d) Graph of added 

stiffness for a unit dynamic response with respect to mode number

The two components of stiffness forces are
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of which the horizontal component is not affected by the beam motion while the vertical 
component is affected by the additional added stiffness of the beam onto the nonlinear 
supporting unit. We choose the static position 𝒒𝒒0 = [𝑞𝑞10 0]𝑇𝑇satisfying Equation (1) as 
a zero point of the potential energy, that is 
 
 𝛱𝛱[𝒒𝒒0] = �̄�𝑚�̄�𝜔2𝑞𝑞10

2 − �̄�𝑘𝑞𝑞10 − �̄�𝑓1𝑞𝑞10 = 0 (29) 

 
The potential energy at position q of the system is 
  
 𝛱𝛱[𝒒𝒒] = ∫ 𝑑𝑑𝒒𝒒𝑇𝑇

𝒒𝒒

𝒒𝒒0

= [1
2 𝒒𝒒𝑇𝑇(𝒌𝒌𝑏𝑏 + �̄�𝑴�̄�𝝎2)𝒒𝒒]𝒒𝒒0

𝒒𝒒 − 1
2 ∫ �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)−1

2𝑑𝑑(𝒒𝒒𝑇𝑇
𝒒𝒒

𝒒𝒒0
𝒒𝒒)

− �̄�𝑓1(𝑞𝑞1 − 𝑞𝑞10)
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 − 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)1/2 + �̄�𝑘𝑞𝑞10

− �̄�𝑓1𝑞𝑞1 + �̄�𝑓1𝑞𝑞10
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 + 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘√𝑞𝑞1

2 + 𝑞𝑞2
2

− �̄�𝑓1𝑞𝑞1. 

(30) 

 
In this equation, the term 𝑘𝑘𝑏𝑏𝑞𝑞2

2/2  represents the elastic energy of the beam, which 
vanishes if only the beam rigid mode is retained.  
 
The graph in Figure 3 (a) show the horizontal component of stiffness force for different 
values of kb.   Figure 3 (b) until (f) show the vertical component of stiffness force affected 
by different values of kb. 
 
From Equation (28) the horizontal stiffness force 𝐹𝐹𝑅𝑅1 and the vertical stiffness force 𝐹𝐹𝑅𝑅2 
of the beam and nonlinear suspension unit can be derived. From here, the parameters that 
affect the stiffness forces can be identified. 
 
Inserting the values of  𝒌𝒌𝑏𝑏 ,�̄�𝑴, �̄�𝝎2, 𝒌𝒌(𝒒𝒒), 𝒌𝒌1(𝒒𝒒) and 𝒒𝒒 from Equation (15) and (24) we 
obtain 
 
 
  

𝑭𝑭𝑅𝑅 = [𝒌𝒌𝑏𝑏 + ([�̄�𝑚 0
0 1] [�̄�𝜔2 0

0 �̄�𝛺2] + − �̄�𝑘
�̄�𝜇 𝑰𝑰

+ − �̄�𝑓1
𝑞𝑞1

𝑰𝑰1)] [𝑞𝑞1
𝑞𝑞2

] 
 

(31) 

                            (28)

of which the horizontal component is not affected by the beam motion 
while the vertical component is affected by the additional added stiffness of 
the beam onto the nonlinear supporting unit. We choose the static position  
q0 = [q10 0]T satisfying Equation (1) as a zero point of the potential energy,  
that is
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of which the horizontal component is not affected by the beam motion while the vertical 
component is affected by the additional added stiffness of the beam onto the nonlinear 
supporting unit. We choose the static position 𝒒𝒒0 = [𝑞𝑞10 0]𝑇𝑇satisfying Equation (1) as 
a zero point of the potential energy, that is 
 
 𝛱𝛱[𝒒𝒒0] = �̄�𝑚�̄�𝜔2𝑞𝑞10

2 − �̄�𝑘𝑞𝑞10 − �̄�𝑓1𝑞𝑞10 = 0 (29) 

 
The potential energy at position q of the system is 
  
 𝛱𝛱[𝒒𝒒] = ∫ 𝑑𝑑𝒒𝒒𝑇𝑇

𝒒𝒒

𝒒𝒒0

= [1
2 𝒒𝒒𝑇𝑇(𝒌𝒌𝑏𝑏 + �̄�𝑴�̄�𝝎2)𝒒𝒒]𝒒𝒒0

𝒒𝒒 − 1
2 ∫ �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)−1

2𝑑𝑑(𝒒𝒒𝑇𝑇
𝒒𝒒

𝒒𝒒0
𝒒𝒒)

− �̄�𝑓1(𝑞𝑞1 − 𝑞𝑞10)
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 − 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)1/2 + �̄�𝑘𝑞𝑞10

− �̄�𝑓1𝑞𝑞1 + �̄�𝑓1𝑞𝑞10
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 + 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘√𝑞𝑞1

2 + 𝑞𝑞2
2

− �̄�𝑓1𝑞𝑞1. 

(30) 

 
In this equation, the term 𝑘𝑘𝑏𝑏𝑞𝑞2

2/2  represents the elastic energy of the beam, which 
vanishes if only the beam rigid mode is retained.  
 
The graph in Figure 3 (a) show the horizontal component of stiffness force for different 
values of kb.   Figure 3 (b) until (f) show the vertical component of stiffness force affected 
by different values of kb. 
 
From Equation (28) the horizontal stiffness force 𝐹𝐹𝑅𝑅1 and the vertical stiffness force 𝐹𝐹𝑅𝑅2 
of the beam and nonlinear suspension unit can be derived. From here, the parameters that 
affect the stiffness forces can be identified. 
 
Inserting the values of  𝒌𝒌𝑏𝑏 ,�̄�𝑴, �̄�𝝎2, 𝒌𝒌(𝒒𝒒), 𝒌𝒌1(𝒒𝒒) and 𝒒𝒒 from Equation (15) and (24) we 
obtain 
 
 
  

𝑭𝑭𝑅𝑅 = [𝒌𝒌𝑏𝑏 + ([�̄�𝑚 0
0 1] [�̄�𝜔2 0

0 �̄�𝛺2] + − �̄�𝑘
�̄�𝜇 𝑰𝑰

+ − �̄�𝑓1
𝑞𝑞1

𝑰𝑰1)] [𝑞𝑞1
𝑞𝑞2

] 
 

(31) 

                             (29)
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of which the horizontal component is not affected by the beam motion while the vertical 
component is affected by the additional added stiffness of the beam onto the nonlinear 
supporting unit. We choose the static position 𝒒𝒒0 = [𝑞𝑞10 0]𝑇𝑇satisfying Equation (1) as 
a zero point of the potential energy, that is 
 
 𝛱𝛱[𝒒𝒒0] = �̄�𝑚�̄�𝜔2𝑞𝑞10

2 − �̄�𝑘𝑞𝑞10 − �̄�𝑓1𝑞𝑞10 = 0 (29) 

 
The potential energy at position q of the system is 
  
 𝛱𝛱[𝒒𝒒] = ∫ 𝑑𝑑𝒒𝒒𝑇𝑇

𝒒𝒒

𝒒𝒒0

= [1
2 𝒒𝒒𝑇𝑇(𝒌𝒌𝑏𝑏 + �̄�𝑴�̄�𝝎2)𝒒𝒒]𝒒𝒒0

𝒒𝒒 − 1
2 ∫ �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)−1

2𝑑𝑑(𝒒𝒒𝑇𝑇
𝒒𝒒

𝒒𝒒0
𝒒𝒒)

− �̄�𝑓1(𝑞𝑞1 − 𝑞𝑞10)
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 − 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)1/2 + �̄�𝑘𝑞𝑞10

− �̄�𝑓1𝑞𝑞1 + �̄�𝑓1𝑞𝑞10
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 + 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘√𝑞𝑞1

2 + 𝑞𝑞2
2

− �̄�𝑓1𝑞𝑞1. 

(30) 

 
In this equation, the term 𝑘𝑘𝑏𝑏𝑞𝑞2

2/2  represents the elastic energy of the beam, which 
vanishes if only the beam rigid mode is retained.  
 
The graph in Figure 3 (a) show the horizontal component of stiffness force for different 
values of kb.   Figure 3 (b) until (f) show the vertical component of stiffness force affected 
by different values of kb. 
 
From Equation (28) the horizontal stiffness force 𝐹𝐹𝑅𝑅1 and the vertical stiffness force 𝐹𝐹𝑅𝑅2 
of the beam and nonlinear suspension unit can be derived. From here, the parameters that 
affect the stiffness forces can be identified. 
 
Inserting the values of  𝒌𝒌𝑏𝑏 ,�̄�𝑴, �̄�𝝎2, 𝒌𝒌(𝒒𝒒), 𝒌𝒌1(𝒒𝒒) and 𝒒𝒒 from Equation (15) and (24) we 
obtain 
 
 
  

𝑭𝑭𝑅𝑅 = [𝒌𝒌𝑏𝑏 + ([�̄�𝑚 0
0 1] [�̄�𝜔2 0

0 �̄�𝛺2] + − �̄�𝑘
�̄�𝜇 𝑰𝑰

+ − �̄�𝑓1
𝑞𝑞1

𝑰𝑰1)] [𝑞𝑞1
𝑞𝑞2

] 
 

(31) 

  

(30)
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of which the horizontal component is not affected by the beam motion while the vertical 
component is affected by the additional added stiffness of the beam onto the nonlinear 
supporting unit. We choose the static position 𝒒𝒒0 = [𝑞𝑞10 0]𝑇𝑇satisfying Equation (1) as 
a zero point of the potential energy, that is 
 
 𝛱𝛱[𝒒𝒒0] = �̄�𝑚�̄�𝜔2𝑞𝑞10

2 − �̄�𝑘𝑞𝑞10 − �̄�𝑓1𝑞𝑞10 = 0 (29) 

 
The potential energy at position q of the system is 
  
 𝛱𝛱[𝒒𝒒] = ∫ 𝑑𝑑𝒒𝒒𝑇𝑇

𝒒𝒒

𝒒𝒒0

= [1
2 𝒒𝒒𝑇𝑇(𝒌𝒌𝑏𝑏 + �̄�𝑴�̄�𝝎2)𝒒𝒒]𝒒𝒒0

𝒒𝒒 − 1
2 ∫ �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)−1

2𝑑𝑑(𝒒𝒒𝑇𝑇
𝒒𝒒

𝒒𝒒0
𝒒𝒒)

− �̄�𝑓1(𝑞𝑞1 − 𝑞𝑞10)
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 − 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)1/2 + �̄�𝑘𝑞𝑞10

− �̄�𝑓1𝑞𝑞1 + �̄�𝑓1𝑞𝑞10
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 + 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘√𝑞𝑞1

2 + 𝑞𝑞2
2

− �̄�𝑓1𝑞𝑞1. 

(30) 

 
In this equation, the term 𝑘𝑘𝑏𝑏𝑞𝑞2

2/2  represents the elastic energy of the beam, which 
vanishes if only the beam rigid mode is retained.  
 
The graph in Figure 3 (a) show the horizontal component of stiffness force for different 
values of kb.   Figure 3 (b) until (f) show the vertical component of stiffness force affected 
by different values of kb. 
 
From Equation (28) the horizontal stiffness force 𝐹𝐹𝑅𝑅1 and the vertical stiffness force 𝐹𝐹𝑅𝑅2 
of the beam and nonlinear suspension unit can be derived. From here, the parameters that 
affect the stiffness forces can be identified. 
 
Inserting the values of  𝒌𝒌𝑏𝑏 ,�̄�𝑴, �̄�𝝎2, 𝒌𝒌(𝒒𝒒), 𝒌𝒌1(𝒒𝒒) and 𝒒𝒒 from Equation (15) and (24) we 
obtain 
 
 
  

𝑭𝑭𝑅𝑅 = [𝒌𝒌𝑏𝑏 + ([�̄�𝑚 0
0 1] [�̄�𝜔2 0

0 �̄�𝛺2] + − �̄�𝑘
�̄�𝜇 𝑰𝑰

+ − �̄�𝑓1
𝑞𝑞1

𝑰𝑰1)] [𝑞𝑞1
𝑞𝑞2
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(31) 

In this equation, the term 
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of which the horizontal component is not affected by the beam motion while the vertical 
component is affected by the additional added stiffness of the beam onto the nonlinear 
supporting unit. We choose the static position 𝒒𝒒0 = [𝑞𝑞10 0]𝑇𝑇satisfying Equation (1) as 
a zero point of the potential energy, that is 
 
 𝛱𝛱[𝒒𝒒0] = �̄�𝑚�̄�𝜔2𝑞𝑞10

2 − �̄�𝑘𝑞𝑞10 − �̄�𝑓1𝑞𝑞10 = 0 (29) 

 
The potential energy at position q of the system is 
  
 𝛱𝛱[𝒒𝒒] = ∫ 𝑑𝑑𝒒𝒒𝑇𝑇

𝒒𝒒

𝒒𝒒0

= [1
2 𝒒𝒒𝑇𝑇(𝒌𝒌𝑏𝑏 + �̄�𝑴�̄�𝝎2)𝒒𝒒]𝒒𝒒0

𝒒𝒒 − 1
2 ∫ �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)−1

2𝑑𝑑(𝒒𝒒𝑇𝑇
𝒒𝒒

𝒒𝒒0
𝒒𝒒)

− �̄�𝑓1(𝑞𝑞1 − 𝑞𝑞10)
                              

= 1
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2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)1/2 + �̄�𝑘𝑞𝑞10

− �̄�𝑓1𝑞𝑞1 + �̄�𝑓1𝑞𝑞10
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 + 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘√𝑞𝑞1

2 + 𝑞𝑞2
2

− �̄�𝑓1𝑞𝑞1. 

(30) 

 
In this equation, the term 𝑘𝑘𝑏𝑏𝑞𝑞2

2/2  represents the elastic energy of the beam, which 
vanishes if only the beam rigid mode is retained.  
 
The graph in Figure 3 (a) show the horizontal component of stiffness force for different 
values of kb.   Figure 3 (b) until (f) show the vertical component of stiffness force affected 
by different values of kb. 
 
From Equation (28) the horizontal stiffness force 𝐹𝐹𝑅𝑅1 and the vertical stiffness force 𝐹𝐹𝑅𝑅2 
of the beam and nonlinear suspension unit can be derived. From here, the parameters that 
affect the stiffness forces can be identified. 
 
Inserting the values of  𝒌𝒌𝑏𝑏 ,�̄�𝑴, �̄�𝝎2, 𝒌𝒌(𝒒𝒒), 𝒌𝒌1(𝒒𝒒) and 𝒒𝒒 from Equation (15) and (24) we 
obtain 
 
 
  

𝑭𝑭𝑅𝑅 = [𝒌𝒌𝑏𝑏 + ([�̄�𝑚 0
0 1] [�̄�𝜔2 0

0 �̄�𝛺2] + − �̄�𝑘
�̄�𝜇 𝑰𝑰

+ − �̄�𝑓1
𝑞𝑞1

𝑰𝑰1)] [𝑞𝑞1
𝑞𝑞2

] 
 

(31) 

 represents the elastic energy of the beam, 
which vanishes if only the beam rigid mode is retained. 

The graph in Figure 3 (a) show the horizontal component of stiffness force 
for different values of kb. Figure 3 (b) until (f) show the vertical component of 
stiffness force affected by different values of kb.

From Equation (28) the horizontal stiffness force FR1 and the vertical stiffness 
force FR2 of the beam and nonlinear suspension unit can be derived. From here, 
the parameters that affect the stiffness forces can be identified.

Inserting the values of 
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of which the horizontal component is not affected by the beam motion while the vertical 
component is affected by the additional added stiffness of the beam onto the nonlinear 
supporting unit. We choose the static position 𝒒𝒒0 = [𝑞𝑞10 0]𝑇𝑇satisfying Equation (1) as 
a zero point of the potential energy, that is 
 
 𝛱𝛱[𝒒𝒒0] = �̄�𝑚�̄�𝜔2𝑞𝑞10

2 − �̄�𝑘𝑞𝑞10 − �̄�𝑓1𝑞𝑞10 = 0 (29) 

 
The potential energy at position q of the system is 
  
 𝛱𝛱[𝒒𝒒] = ∫ 𝑑𝑑𝒒𝒒𝑇𝑇

𝒒𝒒

𝒒𝒒0

= [1
2 𝒒𝒒𝑇𝑇(𝒌𝒌𝑏𝑏 + �̄�𝑴�̄�𝝎2)𝒒𝒒]𝒒𝒒0

𝒒𝒒 − 1
2 ∫ �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)−1

2𝑑𝑑(𝒒𝒒𝑇𝑇
𝒒𝒒

𝒒𝒒0
𝒒𝒒)

− �̄�𝑓1(𝑞𝑞1 − 𝑞𝑞10)
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 − 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)1/2 + �̄�𝑘𝑞𝑞10

− �̄�𝑓1𝑞𝑞1 + �̄�𝑓1𝑞𝑞10
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 + 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘√𝑞𝑞1

2 + 𝑞𝑞2
2

− �̄�𝑓1𝑞𝑞1. 

(30) 

 
In this equation, the term 𝑘𝑘𝑏𝑏𝑞𝑞2

2/2  represents the elastic energy of the beam, which 
vanishes if only the beam rigid mode is retained.  
 
The graph in Figure 3 (a) show the horizontal component of stiffness force for different 
values of kb.   Figure 3 (b) until (f) show the vertical component of stiffness force affected 
by different values of kb. 
 
From Equation (28) the horizontal stiffness force 𝐹𝐹𝑅𝑅1 and the vertical stiffness force 𝐹𝐹𝑅𝑅2 
of the beam and nonlinear suspension unit can be derived. From here, the parameters that 
affect the stiffness forces can be identified. 
 
Inserting the values of  𝒌𝒌𝑏𝑏 ,�̄�𝑴, �̄�𝝎2, 𝒌𝒌(𝒒𝒒), 𝒌𝒌1(𝒒𝒒) and 𝒒𝒒 from Equation (15) and (24) we 
obtain 
 
 
  

𝑭𝑭𝑅𝑅 = [𝒌𝒌𝑏𝑏 + ([�̄�𝑚 0
0 1] [�̄�𝜔2 0

0 �̄�𝛺2] + − �̄�𝑘
�̄�𝜇 𝑰𝑰

+ − �̄�𝑓1
𝑞𝑞1

𝑰𝑰1)] [𝑞𝑞1
𝑞𝑞2

] 
 

(31) 
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of which the horizontal component is not affected by the beam motion while the vertical 
component is affected by the additional added stiffness of the beam onto the nonlinear 
supporting unit. We choose the static position 𝒒𝒒0 = [𝑞𝑞10 0]𝑇𝑇satisfying Equation (1) as 
a zero point of the potential energy, that is 
 
 𝛱𝛱[𝒒𝒒0] = �̄�𝑚�̄�𝜔2𝑞𝑞10

2 − �̄�𝑘𝑞𝑞10 − �̄�𝑓1𝑞𝑞10 = 0 (29) 

 
The potential energy at position q of the system is 
  
 𝛱𝛱[𝒒𝒒] = ∫ 𝑑𝑑𝒒𝒒𝑇𝑇

𝒒𝒒

𝒒𝒒0

= [1
2 𝒒𝒒𝑇𝑇(𝒌𝒌𝑏𝑏 + �̄�𝑴�̄�𝝎2)𝒒𝒒]𝒒𝒒0

𝒒𝒒 − 1
2 ∫ �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)−1

2𝑑𝑑(𝒒𝒒𝑇𝑇
𝒒𝒒

𝒒𝒒0
𝒒𝒒)

− �̄�𝑓1(𝑞𝑞1 − 𝑞𝑞10)
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 − 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)1/2 + �̄�𝑘𝑞𝑞10

− �̄�𝑓1𝑞𝑞1 + �̄�𝑓1𝑞𝑞10
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1

2 + 𝑞𝑞10
2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘√𝑞𝑞1

2 + 𝑞𝑞2
2

− �̄�𝑓1𝑞𝑞1. 

(30) 

 
In this equation, the term 𝑘𝑘𝑏𝑏𝑞𝑞2

2/2  represents the elastic energy of the beam, which 
vanishes if only the beam rigid mode is retained.  
 
The graph in Figure 3 (a) show the horizontal component of stiffness force for different 
values of kb.   Figure 3 (b) until (f) show the vertical component of stiffness force affected 
by different values of kb. 
 
From Equation (28) the horizontal stiffness force 𝐹𝐹𝑅𝑅1 and the vertical stiffness force 𝐹𝐹𝑅𝑅2 
of the beam and nonlinear suspension unit can be derived. From here, the parameters that 
affect the stiffness forces can be identified. 
 
Inserting the values of  𝒌𝒌𝑏𝑏 ,�̄�𝑴, �̄�𝝎2, 𝒌𝒌(𝒒𝒒), 𝒌𝒌1(𝒒𝒒) and 𝒒𝒒 from Equation (15) and (24) we 
obtain 
 
 
  

𝑭𝑭𝑅𝑅 = [𝒌𝒌𝑏𝑏 + ([�̄�𝑚 0
0 1] [�̄�𝜔2 0

0 �̄�𝛺2] + − �̄�𝑘
�̄�𝜇 𝑰𝑰

+ − �̄�𝑓1
𝑞𝑞1

𝑰𝑰1)] [𝑞𝑞1
𝑞𝑞2

] 
 

(31) 

 from Equation (15) and 
(24) we obtain
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of which the horizontal component is not affected by the beam motion while the vertical 
component is affected by the additional added stiffness of the beam onto the nonlinear 
supporting unit. We choose the static position 𝒒𝒒0 = [𝑞𝑞10 0]𝑇𝑇satisfying Equation (1) as 
a zero point of the potential energy, that is 
 
 𝛱𝛱[𝒒𝒒0] = �̄�𝑚�̄�𝜔2𝑞𝑞10

2 − �̄�𝑘𝑞𝑞10 − �̄�𝑓1𝑞𝑞10 = 0 (29) 

 
The potential energy at position q of the system is 
  
 𝛱𝛱[𝒒𝒒] = ∫ 𝑑𝑑𝒒𝒒𝑇𝑇

𝒒𝒒

𝒒𝒒0
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2 𝒒𝒒𝑇𝑇(𝒌𝒌𝑏𝑏 + �̄�𝑴�̄�𝝎2)𝒒𝒒]𝒒𝒒0

𝒒𝒒 − 1
2 ∫ �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)−1

2𝑑𝑑(𝒒𝒒𝑇𝑇
𝒒𝒒

𝒒𝒒0
𝒒𝒒)

− �̄�𝑓1(𝑞𝑞1 − 𝑞𝑞10)
                              

= 1
2 [�̄�𝑚�̄�𝜔2(𝑞𝑞1
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2 ) + �̄�𝛺2𝑞𝑞2

2 + 𝑘𝑘𝑏𝑏𝑞𝑞2
2] − �̄�𝑘(𝒒𝒒𝑇𝑇𝒒𝒒)1/2 + �̄�𝑘𝑞𝑞10

− �̄�𝑓1𝑞𝑞1 + �̄�𝑓1𝑞𝑞10
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(30) 

 
In this equation, the term 𝑘𝑘𝑏𝑏𝑞𝑞2

2/2  represents the elastic energy of the beam, which 
vanishes if only the beam rigid mode is retained.  
 
The graph in Figure 3 (a) show the horizontal component of stiffness force for different 
values of kb.   Figure 3 (b) until (f) show the vertical component of stiffness force affected 
by different values of kb. 
 
From Equation (28) the horizontal stiffness force 𝐹𝐹𝑅𝑅1 and the vertical stiffness force 𝐹𝐹𝑅𝑅2 
of the beam and nonlinear suspension unit can be derived. From here, the parameters that 
affect the stiffness forces can be identified. 
 
Inserting the values of  𝒌𝒌𝑏𝑏 ,�̄�𝑴, �̄�𝝎2, 𝒌𝒌(𝒒𝒒), 𝒌𝒌1(𝒒𝒒) and 𝒒𝒒 from Equation (15) and (24) we 
obtain 
 
 
  

𝑭𝑭𝑅𝑅 = [𝒌𝒌𝑏𝑏 + ([�̄�𝑚 0
0 1] [�̄�𝜔2 0

0 �̄�𝛺2] + − �̄�𝑘
�̄�𝜇 𝑰𝑰

+ − �̄�𝑓1
𝑞𝑞1

𝑰𝑰1)] [𝑞𝑞1
𝑞𝑞2
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(31)                            (31)
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(e) 

 
 

(f) 

Figure 3. (a) Horizontal nonlinear stiffness force affected by kb, (b) Vertical 
nonlinear stiffness force when kb = 0, (c) Vertical nonlinear stiffness force when 
kb = 67.99,(d) Vertical nonlinear stiffness force when kb = 1443.4, (e)  Vertical 
nonlinear stiffness force when kb = 8908, (f) Vertical nonlinear stiffness force 

when kb = 30787 
 

 
It can be seen in Figure 3(a) that the value of 𝑘𝑘𝑏𝑏 does not affect the horizontal component 
of stiffness force.  The graphs overlap each other even though different values of 𝑘𝑘𝑏𝑏 are 
used. This is also proven from Equation (31), whereby there is no 𝑘𝑘𝑏𝑏 term in the equation 
for the horizontal stiffness force 𝐹𝐹𝑟𝑟2. In Figure 3 (b) to Figure 3 (f), the values of 𝑘𝑘𝑏𝑏 is 
seen to affect the vertical stiffness force. When the value of 𝑘𝑘𝑏𝑏= 0 and 𝑘𝑘𝑏𝑏= 67.99, the 
graphs illustrate a nonlinear behaviour, but for larger values of 𝑘𝑘𝑏𝑏 , the graph becomes a 
linear graph. This is because, larger values of 𝑘𝑘𝑏𝑏 result in 𝑘𝑘𝑏𝑏 being dominant over all the 
other terms (including the nonlinear term) in the vertical stiffness force equation.  
 
There is a potential energy associated with the stiffness force, which can be found by 
integrating the force with displacement. The potential energy at position q of the system 
is given by Equation (30).  Figure 4 (a) to Figure 4 (e) show the potential energy at 
position q (static equilibrium position) of the system with different values of 𝑘𝑘𝑏𝑏.  
 
When 𝑘𝑘𝑏𝑏 is zero, which means there is no elastic energy in the beam, and the beam is in 
its rigid mode, the graph of potential energy varies across q1 (x-axis). When there is a 
value of 𝑘𝑘𝑏𝑏  the graph varies across q2 (y-axis).  This is in line with the equation of stiffness 
forces whereby 𝑘𝑘𝑏𝑏 only affects the y-axis. As 𝑘𝑘𝑏𝑏 increases, so does the value of potential 
energy. 
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Figure 3  (a) Horizontal nonlinear stiffness force affected by kb, (b) Vertical nonlinear 

stiffness force when kb = 0, (c) Vertical nonlinear stiffness force when kb = 67.99, 
(d) Vertical nonlinear stiffness force when kb = 1443.4, (e) Vertical nonlinear stiffness 

force when kb = 8908, (f) Vertical nonlinear stiffness force when kb = 30787

It can be seen in Figure 3(a) that the value of kb does not affect the horizontal 
component of stiffness force. The graphs overlap each other even though 
different values of kb are used. This is also proven from Equation (31), 
whereby there is no kb term in the equation for the horizontal stiffness force Fr2.  
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In Figure 3 (b) to Figure 3 (f), the values of kb is seen to affect the vertical  
stiffness force. When the value of kb = 0 and kb = 67.99, the graphs illustrate a 
nonlinear behaviour, but for larger values of kb, the graph becomes a linear graph. 
This is because, larger values of kb result in kb being dominant over all the other 
terms (including the nonlinear term) in the vertical stiffness force equation. 

There is a potential energy associated with the stiffness force, which can be 
found by integrating the force with displacement. The potential energy at 
position q of the system is given by Equation (30). Figure 4 (a) to Figure 4 
(e) show the potential energy at position q (static equilibrium position) of the 
system with different values of kb. 

When kb is zero, which means there is no elastic energy in the beam, and the 
beam is in its rigid mode, the graph of potential energy varies across q1 (x-axis). 
When there is a value of kb the graph varies across q2 (y-axis). This is in line 
with the equation of stiffness forces whereby kb only affects the y-axis. As kb 
increases, so does the value of potential energy.
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Figure 4. Potential energy for position q at the static position q10 = 0.6471 at (a) kb=0, 
(b) kb=67.99, (c) kb = 1443.4, (d) kb = 8908 and (e) kb = 30787 
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(e)

Figure 4  Potential energy for position q at the static position q10 = 0.6471 at  
(a) kb = 0, (b) kb = 67.99, (c) kb = 1443.4, (d) kb = 8908 and (e) kb = 30787

3.0 BEAM-NONLINEAR ISOLATOR DESIGN

3.1  Low Stiffness Support

We consider Figure 1 as a simplified model for ground vibration tests of large 
full-scale aircrafts. The central mass is considered as the mass of the fuselage 
and the two beams connected to the central mass are the two wings of the 
aircraft. Aircrafts flying in the air are in a free-free state without any mechanical 
supports. However, in tests, the aircraft is supported on the ground so the 
supporting system will have an affect on the aircraft’s dynamic characteristics. 
For a reliable test result, the effect of supporting system should be as less as 
possible. It has been demonstrated that the effect of supporting system on the 
aircraft could be neglected if the frequency of an assumed rigid aircraft ΩSA,  
on the supporting system is less than one third of the first elastic natural 
frequency of the free-free aircraft  ΩEA (Molyneux 1958; Xing 1975), i.e.

ΩSA ≤ ΩEA/3                                                    (32)

For small aircrafts, their first elastic natural frequency is high enough and 
there is no difficulty to design a supporting system satisfying Equation (19). 
However, for very large aircrafts, the first natural frequency, usually the first-
order bending frequency of aircraft wings is lower than 1 Hz. Therefore, the 
supporting frequency for large aircraft tests should be less than 0.3 Hz. Due 
to a very large weight of the aircraft supported in the static state, the static 
stiffness of the supporting system must be sufficiently large to balance the 
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heavy weight. As a result, it is very difficult to design a supporting system with 
less than 0.3 Hz supporting frequency for large aircrafts by means of normal 
supporting designs, such as air spring system etc. (Molyneux 1958; Xing 1975). 
Nonlinear supporting system provides an effective approach to design this 
type of supporting systems.

To support the airplane on the ground, a point is chosen as the static equilibrium 
state of the aircraft on the ground. Based on Equation (1), Δ=Y0 − L,  from 
which we can choose a suitable height Y0 according to the initial length L of the 
vertical spring, so that a negative parameter 
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choose a suitable height  𝑌𝑌0 according to the initial length 𝐿𝐿 of the vertical spring, so that 
a negative parameter �̄�𝛥 and the vertical stiffness �̄�𝐾 are determined by 
   
 �̄�𝐾 = (1 + �̄�𝜌�̄�𝑆)�̄�𝑔/|�̄�𝛥|, 𝐾𝐾 = 𝑀𝑀𝛺𝛺0

2�̄�𝐾 (33) 

 
Because the total mass of the large airplane is huge, the stiffness of the vertical spring is 
very large. If there are no two inclined springs, the supporting frequency of the aircraft 
and the static compression of the vertical spring are required to satisfy the conditions 
 
 𝛺𝛺𝑆𝑆𝑆𝑆 = √�̄�𝐾/(1 + �̄�𝜌�̄�𝑆) = √�̄�𝑔/|�̄�𝛥| ≤ 𝛺𝛺𝐸𝐸𝑆𝑆/3, |�̄�𝛥|

≥ 9�̄�𝑔/𝛺𝛺𝐸𝐸𝑆𝑆
2  

(34) 

 
A limited space of test site does not allow these conditions to be realised only using linear 
supporting systems. The natural frequency is found to be 
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A limited space of test site does not allow these conditions to be realised only using linear 
supporting systems. The natural frequency is found to be 
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(34) 

 
A limited space of test site does not allow these conditions to be realised only using linear 
supporting systems. The natural frequency is found to be 
  

                             (33)
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A limited space of test site does not allow these conditions to be realised only 
using linear supporting systems. The natural frequency is found to be
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𝛺𝛺𝑁𝑁𝑁𝑁𝑁𝑁 = �̂̆�𝛺2

(1) = √(1 − �̄�𝑘�̄�𝛺−2/�̄�𝜇0
(1))/(1 + �̃�𝜌�̃�𝑆)�̄�𝛺, �̄�𝜇0

(1)

= �̃�𝑘1 + �̃�𝐾1�̄�𝛥1 

(35) 

 
 
Based on Equations (8) and (12), we obtain 
  
 �̄�𝛥1 = (𝑋𝑋0 − 𝐿𝐿1)/𝑙𝑙, �̄�𝜇0

(1) = �̃�𝐾1(𝑘𝑘/𝐾𝐾1 + �̄�𝛥1), (36) 

 
so that to reduce the supporting frequency Equation (35) we must choose a point to design 
the system satisfying 
 
 1 ≥ �̄�𝑘�̄�𝛺−2/�̄�𝜇0

(1) > 0, �̃�𝑘1 + �̃�𝐾1�̄�𝛥1 > 0 (37) 

 
This design condition is easily realised. In this design, the nonlinear stiffness term  
�̄�𝑘�̄�𝛺−2/�̄�𝜇0

(1)plays a negative stiffness in Equation (35) to reduce the supporting frequency. 
Theoretically, from Equation (37), we may choose the value of  �̄�𝑘�̄�𝛺−2/�̄�𝜇0

(1) near to 1 to 
realise the standard 𝛺𝛺𝑁𝑁𝑁𝑁𝑁𝑁 < 𝛺𝛺𝐸𝐸𝑁𝑁/3.  
 
3.1.1 Choosing suitable parameters 
 
The suitable parameters are first chosen to satisfy Equation (37). The values of stiffness 
K and K1 can be found from Equation (1). The value of stiffness k is chosen to be the same 
as K.  
 𝐾𝐾 = −𝑔𝑔(𝑀𝑀 + 𝜌𝜌𝜌𝜌)

𝛥𝛥 , 𝛥𝛥 = 𝑌𝑌0 − 𝐿𝐿

𝐾𝐾1 = 𝑘𝑘(𝑙𝑙 − 𝑥𝑥0)
𝑥𝑥0 − 𝛥𝛥1

, 𝛥𝛥1 = 𝑋𝑋0 − 𝐿𝐿1 
(38) 

 
3.1.2 Linear analysis 
 
Linear analysis is done by applying small vibration about the chosen equilibrium point to 
find the natural frequencies and modes of the system which will be compared with the 
natural frequencies and modes of the free-free beam. Using the eigenvalue equation, the 
eigenvalues and eigenvectors of the beam affected by the nonlinear isolator are found.  
The eigenvalues are the natural frequencies of the beam supported on the nonlinear 
isolator and is shown in Table 1. The eigenvectors are the generalised coordinates which 
is used to find the mode shapes of the beam supported on the nonlinear isolator.  Using 
the mode summation equation in (3), the normalised mode shapes are found as shown in 
Figure 5. The natural frequencies and modes of the free-free beam are shown in Table 2 
and Figure 6. By comparing Table 1 with Table 2, the natural frequencies at the chosen 
equilibrium point are a little lower than the corresponding one of the free - free beam. 
This is caused by the lumped mass M of the supporting isolator which does not exist in 
the free - free beam. At 𝑁𝑁 = 1 (rigid mode in the vertical direction), the natural frequency 
of the beam supported on the nonlinear support is 6.7435e-7 which is less than one third 
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Linear analysis is done by applying small vibration about the chosen 
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which will be compared with the natural frequencies and modes of the free-
free beam. Using the eigenvalue equation, the eigenvalues and eigenvectors 
of the beam affected by the nonlinear isolator are found. The eigenvalues are 
the natural frequencies of the beam supported on the nonlinear isolator and is 
shown in Table 1. The eigenvectors are the generalised coordinates which is 
used to find the mode shapes of the beam supported on the nonlinear isolator.  
Using the mode summation equation in (3), the normalised mode shapes are 
found as shown in Figure 5. The natural frequencies and modes of the free-free 
beam are shown in Table 2 and Figure 6. By comparing Table 1 with Table 2, 
the natural frequencies at the chosen equilibrium point are a little lower than 
the corresponding one of the free - free beam. This is caused by the lumped 
mass M of the supporting isolator which does not exist in the free - free beam. 
At N=1 (rigid mode in the vertical direction), the natural frequency of the beam 
supported on the nonlinear support is 6.7435e-7 which is less than one third of 
the first elastic natural frequency (N=2) of the free-free beam. This satisfies the 
requirement of Equation (37). 
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Table 1  Natural frequencies of beam supported on the nonlinear support at the 
chosen equilibrium point 

n 1 2 3 4 5
Frequency 6.7435e-7 1 5.3902 13.3146 24.7658
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Figure 6  Mode shapes of the free-free beam

The mode shapes of the beam supported on the nonlinear isolator in Figure 5 
are compared to the mode shapes of the free free beam in Figure 6, and it can 
be seen that the mode shapes of the beam on the nonlinear isolator is similar to 
mode shapes of the free free beam.
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3.1.3 Dynamic response

The dynamic response of the system is analysed by applying two sinusoidal 
excitation force to the beam. Equation (18) of the integrated coupling equation 
of the system in state space form was inserted into the Simulink Differential 
Equation Editor block and the parameters in Matlab m-file was defined. Because 
the system is a nonlinear system, it will exhibit nonlinear behaviour, thus chaos 
and bifurcation will be studied.  To observe the nonlinear dynamical behaviour 
of bifurcation and chaos, the phase plane plot of velocity vs displacement for 
the vertical motion of the beam at n=1  is shown in Figure 7 (a) to (e).
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F0 = 12, Ω0 = 0.5, (e) Phase plane plot when F0 = 18 , Ω0 = 0.5
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Fixing the value of excitation frequency Ω0 = 0.5, F0 is varied to observe the 
condition for bifurcation and chaos. From Figure 7 (a), when F0 = 0.01, the 
response is a 1 period motion. When F0 = 1, period doubling bifurcation starts to 
happen as shown in Figure 7 (b). When F0 = 6 and F0 = 12  a 4 period motion can 
be observed as shown in Figure 7 (c) and (d). Increasing the value of excitation 
force to F0 = 18, a 8 period motion is observed in Figure 7 (e).

Increasing the excitation force F0 = 20 and varying the excitation frequency Ω0 
from 0.1Hz to 100Hz, Poincare’ maps where plotted in  Figure 8 to observe the 
behaviour of the system. It can be seen that the Poincare’ maps  all form closed 
loops and no chaotic orbit is observed. 

3.2  High Stiffness Support

The system shown in Figure 1 is considered as a model of laboratory dynamic 
tests. In this test, a beam that is to be tested is symmetrically fixed at a platform 
of mass supported by the nonlinear isolation unit. The beam is intended to be 
fixed on the “rigid” foundation. This implies that the supported unit should 
have an extremely large supporting stiffness and frequency. 

The supporting frequency given in Equation (35) is still valid. From Equation 
(36), to obtain an extremely high frequency, it is necessary to choose an 
equilibrium point in the left half part of the symmetrical system satisfying
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At the first mode, a very high natural frequency of 3.0821e+3 has been obtained. 
When compared to the natural frequencies of the fixed - free beam in Table 3,  
it can be seen that the first frequency is much lower than the theoretical one 
(infinity), while the other frequencies (at mode n = 2,3,4,5) are higher than the 
theoretical one. The eigenfunctions are the generalised coordinates of the beam 
which is used in the mode summation equation in (3) to find the mode shapes 
of the beam supported on the nonlinear isolator as shown in  Figure 10.
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(e)Ω0=3.3Hz,(f)Ω0=5Hz,(g)Ω0=10Hz,(h)Ω0=30Hz, (i)Ω0=40Hz,(j)Ω0=50Hz,(k)Ω0=100Hz
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Table 3  Natural frequencies of fixed- free beam

N 1 2 3 4 5

Frequency ∞ 62.854 393.9279 1.1031e+3 2.1617e+3
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Figure 9  Mode shapes of the fixed-free beam
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Table 4  Natural frequencies of beam on nonlinear vibration isolator  
with high stiffness support

N 1 2 3 4 5

Frequency 3.0821+3 76.9839 484.2000 1.3651e+3 2.7081e+3
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Figure 10  Mode shapes of beam on nonlinear isolator for modes n=1 to 5

4.0 PERFROMANCE ANALYSIS

To evaluate the performance of the nonlinear isolator, a performance analysis 
was done by looking at the force transmissibility of the nonlinear isolator. 
Transmissibility is a measure of the reduction of vibration transmitted from 
a source to a receiver, in other words, it is an index of the performance of 
an isolator (Carella, 2008). Force transmissibility is the ratio between the 
magnitude of transmitted force (receiver) over magnitude of excitation force 
(source). A harmonic excitation force is acted upon the nonlinear isolator  
in Equation (14). The force transmissibility was found numerically using 
Matlab’s ode45 solver with a given excitation force of F0=0.6, and varying  
the excitation frequency, Ω0 from 0 to 100 Hz. An excitation force of F0=0.6  
was used so that the magnitude of transmissibility at 0 frequency ratio,  
Ω0/Ω is 0 dB. This means that the transmitted force is the same as the  
excitation force at Ω0/Ω=0. The force transmissibility of the nonlinear isolator 
is compared to the force transmissibility of a linear isolator as shown in  
Figure 11, using values of damping ratio of vertical damper, E=6.15e-4,  
stiffness of oblique spring, k=K (stiffness of vertical spring) and initial condition 
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y0=[0.5 0 7 0]. The initial condition is defined by y0=
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 𝑞𝑞2: displacement of mass, M in the vertical direction,  �̇�𝑞2: velocity of mass, M in the 
vertical direction. The initial condition used, y0=[0.5 0 7 0] means that the initial 
displacement of mass m is at 0.5 and the initial displacement of mass M is at 7. This also 
defines the position of the oblique spring. Figure 11 shows the transmissibility plot in 
decibel (dB) scale for the nonlinear isolator and linear isolator. The linear isolator consists 
of a mass with a vertical spring and damper. The effectiveness of a vibration isolator can 
be measured by looking at the bandwidth of the isolation region and peak transmissibility 
(Carella, 2008). Isolation region is the frequency region within which the transmitted 
force becomes smaller than the excitation force, that is when the transmissibility is less 
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for a given amplitude of input force. It can be seen from Figure 11 that the transmissibility 
of the nonlinear isolator has a wider isolation region and a lower peak transmissibility 
compared to the linear isolator. This shows that the nonlinear isolator performs better than 
a linear isolator.  
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Figure 11. Force transmissibility of nonlinear isolator compared to a linear isolator 

To observe the effect of changing the position of the oblique spring, the initial condition 
y0 was varied and the force transmissibility of the nonlinear isolator is shown in Figure 
12 (a). It is shown that the isolation region is wider as the initial displacement of the mass 
in the vertical direction is increased. Therefore, it is better to have a higher value of initial 
displacement of the mass in the vertical direction.  Figure 12 (b) shows the force 
transmissibility of the nonlinear isolator when the damping coefficient is varied. It can be 
seen that the peak transmissibility decreases as the damping coefficient increases.  A 
reasonable amount of damping can therefore decrease the peak transmissibility which is 
beneficial for the performance of the nonlinear isolator. The force transmissibility of the 
nonlinear isolator with varying stiffness of the oblique spring is shown in Figure 12 (c). 
It can be observed that as the stiffness increases, the beginning value of transmissibility 
increases and peak transmissibility also increases. Therefore, it is advised that a lower 
stiffness of the vertical spring is to be used to obtain a better performance for the nonlinear 
isolator. Finally, the force transmissibility of the nonlinear isolator is compared to the 
force transmissibility of a hardening HSLDS mount (Carella, 2008) as shown in Figure 
12 (d). It can be seen that the nonlinear isolator has a lower peak transmissibility and a 
wider isolation region and therefore has a better performance compared to the HSLDS 
mount. 
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Figure 11  Force transmissibility of nonlinear isolator compared to a linear isolator

To observe the effect of changing the position of the oblique spring, the initial 
condition y0 was varied and the force transmissibility of the nonlinear isolator is 
shown in Figure 12 (a). It is shown that the isolation region is wider as the initial 
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displacement of the mass in the vertical direction is increased. Therefore, it is better 
to have a higher value of initial displacement of the mass in the vertical direction. 
Figure 12 (b) shows the force transmissibility of the nonlinear isolator when the 
damping coefficient is varied. It can be seen that the peak transmissibility decreases 
as the damping coefficient increases.  A reasonable amount of damping can therefore 
decrease the peak transmissibility which is beneficial for the performance of the 
nonlinear isolator. The force transmissibility of the nonlinear isolator with varying 
stiffness of the oblique spring is shown in Figure 12 (c). It can be observed that as 
the stiffness increases, the beginning value of transmissibility increases and peak 
transmissibility also increases. Therefore, it is advised that a lower stiffness of the 
vertical spring is to be used to obtain a better performance for the nonlinear isolator. 
Finally, the force transmissibility of the nonlinear isolator is compared to the force 
transmissibility of a hardening HSLDS mount (Carella, 2008) as shown in Figure 12 
(d). It can be seen that the nonlinear isolator has a lower peak transmissibility and 
a wider isolation region and therefore has a better performance compared to the 
HSLDS mount.

Journal of Engineering and Technology 

ISSN: 2180-3811   Vol. 10 No. 2  July – December 2019  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. (a) Force transmissibility of nonlinear isolator with different initial 
conditions, (b) Force transmissibility of nonlinear isolator with varying damping 

coefficients, (c) Force transmissibility of nonlinear isolator with varying stiffness, (d) 
Force transmissibility of nonlinear isolator compared with HSLDS isolator 

 
 
 
5.0  CONCLUSION 
 
The beam is found to provide additional mass, stiffness and force to the nonlinear isolator. 
The design for low frequency support shows that the natural frequencies and mode shapes 
of the beam supported by the nonlinear isolator at modes n=1 to n=5  was found to be 
similar to the free-free beam natural frequencies and mode shapes. The frequency 
obtained at n=1 (rigid mode) of the beam is 6.7435e-7 which is less than one third of the 
first elastic natural frequency (n=2) of the free-free beam which has a value of 1. This 
satisfies the requirement to perform ground vibration test. Nonlinear behaviour of period 
doubling bifurcation is seen to occur when 𝐹𝐹0 = 1  and 𝛺𝛺0 =0.5Hz. Poincare’ maps 
showed closed loop and no chaos was observed. The force transmissibility of the 
nonlinear isolator indicates that it can perform better than a linear isolator and also 
performs better than a HSLDS mount. 
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5.0 CONCLUSION

The beam is found to provide additional mass, stiffness and force to the 
nonlinear isolator. The design for low frequency support shows that the natural 
frequencies and mode shapes of the beam supported by the nonlinear isolator 
at modes n=1 to n=5  was found to be similar to the free-free beam natural 
frequencies and mode shapes. The frequency obtained at n=1 (rigid mode) of 
the beam is 6.7435e-7 which is less than one third of the first elastic natural 
frequency (n=2) of the free-free beam which has a value of 1. This satisfies the 
requirement to perform ground vibration test. Nonlinear behaviour of period 
doubling bifurcation is seen to occur when F0=1 and Ω0=0.5Hz. Poincare’ maps 
showed closed loop and no chaos was observed. The force transmissibility of 
the nonlinear isolator indicates that it can perform better than a linear isolator 
and also performs better than a HSLDS mount.
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