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Abstract— Octane numbers are considered 
as one of the most important things element 
in fuel to ensure the performance of the 
engine. Octane numbers are also can be the 
cause of failure to the engine. This study is 
present about the performance of the engine 
that relates to the octane numbers and 
compression ratio. The experimental 
procedure was performed by using three 
specimen fuels within the specific range of 
speed at the engine. Data acquisition 
involved the vibration signal recorded by the 
accelerometer sensor. The vibration signal 
that produced by dynamic response of 
combustion engine has been analyzed 
using Fast Fourier Transform (FFT). All the 
data recorded are filtered using the 
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MATLAB to get the valid data. The data 
obtained from the experiment were 
analyzed using statistical analysis method to 
make the interpretation of the data obtained. 
Mean absolute percentage error and root 
mean square error has been showing the 
suitable fuel for the engine N43B20. 
Correlation process has been proved that it 
can be used as a standard for determining 
the suitable fuel for the engine through 
statistical analysis which is non-destructive, 
low cost and efficient method. 

 
 

I. Introduction 
In a vehicle, vibration can 

occur in overall body part 
especially engine. Gasoline 
engine is a type of internal 
combustion engine that almost 
all vehicle used on road 
compared to electrical engine. 
The concept of a gasoline engine 
is mainly burn gasoline for fuel 
to generate energy. The gasoline 
engine is also referred to as 
petrol engine. When the vehicle 
starts running, it can produce 
vibration on the engine. 
Unexpected vibration can 
generate faults in the engine. 
Many faults in the engine can be 
listed, such like clogged radiator 
that caused the engine close to 

overheat if the radiator 
contaminated with dirty coolant. 
Dirty oil can produce and leave 
the molecules on vehicle 
components like spark plugs, 
valves, and combustion 
chambers. It also damages car 
bearing by leaving dirty 
molecule or oil that can become 
embedded in the oil filter which 
produced clogged. Usually, the 
possibility of engine fault 
because of the component that 
always operated in-vehicle 
systems such as pistons, 
bearings, gaskets, cracks rings 
and many more. All these 
possibilities occurred because of 
spark knock, and it can be 
detected by using vibration 
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analysis. Spark knock called as 
premature ignition that occurred 
because of the fuel used is not 
suitable to the engine. 
Unexpected fault in engine can 
cause higher cost for corrective 
maintenance. To find and 
eliminate the fault, there were 
several methods to diagnose the 
condition of the engine. 

Condition monitoring is a 
technique used to monitor the 
vibration and noise in engine. To 
diagnose the failure, a good 
understanding regarding the 
strategy and vibration 
parameters is required. 
Condition monitoring is often 
placed as a maintenance 
technique to diagnose the failure. 
Fuel properties and compression 
ratio can affect the performance 
of the internal combustion 
engine.  

The compression ratio is 
related to the knocking sound [1]. 
Using higher compression ratio 
can improve efficiency to reduce 
the knock but it can give an 
effect to high temperature and 
pressure for unburned mix fuel-
air which can lead to more knock 
at high load. Spark ignition is 
related to research octane 

number (RON) and motor 
octane number (MON) [2]. Fuel 
resistance is linked with the 
auto-ignition that can produce 
carbon in an internal combustion 
engine [3]. 

Research octane number is the 
number that measures the 
quality and performance of fuel 
that has been used in vehicle. 
The higher the octane number, 
the probability to knock ignition 
occur is low. In gasoline, the fuel 
has been mixed with heptane 
and octane. The characteristics 
between these elements are 
heptane can handle the 
compression very low and it can 
compress the cylinder slightly 
and spontaneously ignited. 
Otherwise, the octane can 
handle the compression 
operation very well and it can 
compress the cylinder a lot and 
nothing can happen [4, 5]. 

The fuel with low octane 
number to the high compression 
engine can produce side effect to 
the engine. Using non-suitable 
fuel to the engine can reduce the 
efficiency and performance of 
the engine and can build up the 
carbon in the combustion 
chamber [6]. Thus, by knowing 
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the relation of gasoline octane 
number and compression ratio, 
the performance of the engine 
and causes of engine failure can 
be investigated. 
 
II. Methodology 

The accelerometer is used to 
observe the vibration signals that 
generated by combustion engine 
system by placing the sensor at 
fixed position on the engine 
N43B20. Fuel octane number is 
measured using vibration signal 
record by data acquisition. 
Simultaneous data acquisition 
process involves various types 
of signals that require multi-
channel software. The software 
is capable in observing the data 
for up to 4 channels 
simultaneously [7]. Figure 1 
illustrates the experimental 
design on the engine. 

The system was set up at the 
engine N43B20 in the 
automotive laboratory at Factory 
3 UTeM. These fuels are filled 
sequentially from RON 95 to 
RON 100 into the BMW tank to 
ensure the data is orderly. The 
details steps of conducting the 
experiments are explained in the 
points below: 

 To ensure the data was 
effective and function, the 
accelerometer sensor is 
calibrated using calibration 
exciter. The sensor can detect 
159.4Hz which is the value of 
frequency calibration exciter. 

 The output from the sensor 
accelerometer is connect with 
cables to input channel 1 until 
channel 4 of data acquisition.  
The fuel RON 95 followed by 
RON 97 and RON 100 were 
filled to the fuel tank before 
running the engine. The start 
button then is pushed at the 
engine and both data 
acquisition software and data 
acquisition process to acquire 
the waveform on the screen. 
When the engine started, the 
shape of the signal is 
produced and saved in .txt in 
acquisition data software. 
The speed was increased 
from 1000 rpm to 1500 rpm, 
2000 rpm, 2500 rpm and 
3000 rpm respectively. Off 
the engine before changing 
with another fuel. Remove 
the fuel using a hand siphon 
pump from the fuel tank. Start 
the engine and let the engine 
run until the engine is 
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𝜎𝜎 = √1
𝑁𝑁 ∑ (𝑥𝑥𝑖𝑖 − �̅�𝜇)𝑁𝑁

𝑖𝑖=1
2                 (1)   

                        

The σ can be expressed as 
standard deviation, 𝑥𝑥𝑖𝑖 is discrete 
data value of i-th is a significant 
sample, N is value of data in a 
signal and �̅�𝜇  is a mean for the 
population. The term of  (𝑥𝑥𝑖𝑖 − �̅�𝜇) 
can be expressed by how many 
long the i-th sample can be stray 
from normal path of mean. 
 

𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ 𝑥𝑥𝑖𝑖

2                         (2) 

 
The abbreviated RMS is an 
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the signal, is a global signal 
statistic that is highly sensitive 
to the density of data. Higher 
kurtosis values indicate that 
more extreme values than a 
Gaussian distribution should be 
found. Kurtosis is used to detect 
fault symptoms in engineering 
due to its sensitivity to high 
amplitude events. Kurtosis 
formula is shown as below: 
 

𝑏𝑏2 = ∑(𝑋𝑋𝑖𝑖− �̅�𝑋)4

𝑛𝑛

(∑(𝑋𝑋𝑖𝑖− �̅�𝑋)2

𝑛𝑛 )
2′                     (3)  

                                                        
The symbol in the equation can 

be expressed as b2 is a sample of 
kurtosis, �̅�𝑋 is a sample of mean 
n is a number of samples. 

The statistical of shape for 
skewness is to measure the 
symmetry of the signal. One of 
the characteristics of normal 
distribution is symmetric shape. 
A symmetric normal produced 
when a tail has been balanced 
between both sides. It can be 
observed as a normal 
distribution. The sample 
skewness is defined by equation 
(4) [9]: 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1
𝑁𝑁 ∑ (𝑥𝑥𝑖𝑖 − �̅�𝜇)3𝑁𝑁

𝑖𝑖=1 [1
𝑁𝑁 ∑ (𝑥𝑥𝑖𝑖 −𝑁𝑁

𝑖𝑖=1

�̅�𝜇)2]
3 2⁄

                                                (4) 
 

The vibration signal of the 
engine is then analysed in time 
domain and frequency domain 
signals. The original time 
domain for every fuel were 
presented in figures. All the 
signals were sampled at 250,000 
Hz for 5 sec record length that 
record 3 times for every fuel and 
speed. Figure 2-4 display time 
domain signal and Figure 5-7 
display frequency domain signal. 
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From time-domain it can be 
understood that the vibration 
acceleration increased because 
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Furthermore, when the engine 
running, the amplitude increased 
rapidly, most clearly at cylinder 
1 and cylinder 4 for three types 
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signal was slowly decreased 
until the signal disappears to 
zero amplitude at the frequency 
domain (Figure 5, 6, 7).  

The trending for these three 
fuels (increasing and decreasing 
amplitudes) of a vibration signal 
for each cylinder might be a 
certain effect of the mechanism 
during operation. Fuel 97 and 
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100 1 0.106641 0.098336 0.051717 4.518169 
 2 0.081247 0.065595 -0.02374 3.699238 
 3 0.08266 0.066191 0.009734 3.459198 
 4 0.120738 0.112346 0.077434 3.972101 

 
Table 4: Validation statistical data for 1000 RPM 

 
Fuel 

 
Cylinder RMS Std 

Deviation Kurtosis Skewness 

95 1 0.166229 0.160025 0.156023              3.855834 
 2 0.090893              0.081375                        0.121885              3.429999 
 3 0.139399            0.128490                         0.094983              3.802508 
 4 0.177692            0.172007                        0.098043              4.073829 

97 1 0.113862                  0.106276                        0.006861              3.366793 
 2 0.081475                 0.064273                        0.110728              3.390515 
 3 0.095611                  0.076022                       0.057632              3.372147 
 4 0.132394                  0.123383                       0.127183              3.474905 

100 1 0.165038                  0.159912                       0.026637              3.422085 
 2 0.107695                  0.097914                       0.085526              3.708605 
 3 0.108329                  0.094685                       0.022347              3.331222 
 4 0.182401                  0.176888                       0.090542              3.551979 

 
Table 5: Validation statistical data for 1500 RPM 

 
Fuel 

 
Cylinder RMS 

Std 
Deviation Kurtosis Skewness 

95 1 0.391981                   0.389567                        0.111810               3.506818 
 2 0.172320                      0.167882                        0.138660              3.292523 
 3 0.314554                    0.309721                       0.039935              3.180241 
 4 0.363247                   0.360638                       0.060288               3.321920 

97 1 0.162053                    0.156687                       0.131587              3.054232 
 2 0.118175                    0.107343                       0.241741             3.049705 
 3 0.137072                    0.126805                       0.164528             2.803768 
 4 0.196389                     0.190920                         0.129050              3.043759 

100 1 0.219685                     0.215152                      0.048619             3.112508 
 2 0.148632                      0.139880                        0.165362            3.204594 
 3 0.150195                     0.142116                       0.190597            3.078421 
 4 0.252505                     0.248851                       0.055759            3.210777 
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100 1 0.106641 0.098336 0.051717 4.518169 
 2 0.081247 0.065595 -0.02374 3.699238 
 3 0.08266 0.066191 0.009734 3.459198 
 4 0.120738 0.112346 0.077434 3.972101 

 
Table 4: Validation statistical data for 1000 RPM 
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Cylinder RMS Std 

Deviation Kurtosis Skewness 

95 1 0.166229 0.160025 0.156023              3.855834 
 2 0.090893              0.081375                        0.121885              3.429999 
 3 0.139399            0.128490                         0.094983              3.802508 
 4 0.177692            0.172007                        0.098043              4.073829 

97 1 0.113862                  0.106276                        0.006861              3.366793 
 2 0.081475                 0.064273                        0.110728              3.390515 
 3 0.095611                  0.076022                       0.057632              3.372147 
 4 0.132394                  0.123383                       0.127183              3.474905 

100 1 0.165038                  0.159912                       0.026637              3.422085 
 2 0.107695                  0.097914                       0.085526              3.708605 
 3 0.108329                  0.094685                       0.022347              3.331222 
 4 0.182401                  0.176888                       0.090542              3.551979 

 
Table 5: Validation statistical data for 1500 RPM 

 
Fuel 

 
Cylinder RMS 

Std 
Deviation Kurtosis Skewness 

95 1 0.391981                   0.389567                        0.111810               3.506818 
 2 0.172320                      0.167882                        0.138660              3.292523 
 3 0.314554                    0.309721                       0.039935              3.180241 
 4 0.363247                   0.360638                       0.060288               3.321920 

97 1 0.162053                    0.156687                       0.131587              3.054232 
 2 0.118175                    0.107343                       0.241741             3.049705 
 3 0.137072                    0.126805                       0.164528             2.803768 
 4 0.196389                     0.190920                         0.129050              3.043759 

100 1 0.219685                     0.215152                      0.048619             3.112508 
 2 0.148632                      0.139880                        0.165362            3.204594 
 3 0.150195                     0.142116                       0.190597            3.078421 
 4 0.252505                     0.248851                       0.055759            3.210777 

 
Table 6: Validation statistical data for 2000 RPM 

 
Fuel 

 
Cylinder RMS Std 

Deviation 
Kurtosis Skewness 

95 1 0.551449                   0.549591                       -0.00322               3.251802 
 2 0.274762                   0.271991                        0.139689              3.263156 
 3 0.455176                    0.451788                        0.074428              3.020461 
 4 0.532761                    0.530931                        0.043187               3.141470 

97 1 0.260432                    0.256732                        0.005019              3.044186 
 2 0.197429                    0.191824                        0.135076             3.067827 
 3 0.216316                    0.210373                       -0.06379               2.807606 
 4 0.325976                  0.323011                        0.172393              3.144750 

100 1 0.329754                    0.327064                        0.042299             3.179429 
 2 0.224088                    0.218731                        0.023395             3.078843 
 3 0.226066                    0.219996                          0.144730              2.861089 
 4 0.392439                    0.390025                        0.114462              3.182619 

 
Table 7: Validation statistical data for 2500 RPM 

 
Fuel 

 
Cylinder RMS Std 

Deviation Kurtosis Skewness 

95 1 0.665804                     0.664127                      0.028375               3.176509 
 2 0.353067                     0.350601                       0.269240                3.286941 
 3 0.527801                     0.524921                      0.233913              3.288406 
 4 0.709084                      0.707640                        0.080760               3.035421 

97 1 0.373496                      0.371017                      0.032307               2.914453 
 2 0.324512                       0.320520                       0.366953               2.923554 
 3 0.326125                      0.322807                     0.046444              2.617796 
 4 0.501962                      0.500267                     0.125262                2.729210 

100 1 0.440506                      0.438447                     0.036117              2.976362 
 2 0.356274                       0.352840                       0.486324               3.431970 
 3 0.338114                       0.334660                       0.334125              2.962895 
 4 0.549592                       0.547821                     0.161386              3.149764 

 
Table 8: Validation statistical data for 3000 RPM 

 
Fuel 

 
Cylinder RMS Std 

Deviation Kurtosis Skewness 

95 1 0.869767                   0.868532                       0.019303              3.110602 
 2 0.485528                    0.483848                        0.196387               3.167282 
 3 0.660226                    0.658368                       0.093589               3.200658 
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From Figure 8 and Figure 9, 
the design is similar between 
root mean square and standard 
deviation. According to these 
figures, statistical parameters 
assumed as a vibration response 
for all cylinder in a combustion 
engine. From result in Figure 1 
to Figure 4, assumption obtained 
are as follows: 
• First, each individual cylinder 

has different vibration 
response from the same fuel. 
For example, cylinder 1 and 
cylinder 4 showed highest 
vibration response compare to 
cylinder 2 and cylinder 3. 

• Second, each individual 
cylinder vibration effect at 750 
rpm and 1000 rpm remained 
constant because these two 
speeds were still in the range 
of idle speed where they 
remark no force given at the 
combustion engine. 

• Third, refer to the figure of 
standard deviation and root 
mean square, fuel 97 was in 
the best lines followed by fuel 
100 compare to fuel 95 that 
have a fluctuated line. 

• Forth, the vibration response 
for each cylinder increases 
with the increasing of speed. 

For example, vibration in 
cylinder 1, cylinder 2, cylinder 
3 and cylinder 4 increased 
rapidly from speed 1500 rpm 
to 3000 rpm. 

• Fifth, the figure for kurtosis 
and skewness are not valid and 
it is difficult to analyse. The 
graphs did not show the 
characteristics of kurtosis and 
skewness. To summarise the 
information about these two 
statistical parameters, further 
techniques have been 
conducted to ensure the 
validation of the data. 

 
A. Coefficient of 

determination 
A linear trendline fitting was 

used for the calibration of 
coefficient determination. All 
linear equations for the fuels 
result with high-value 
correlation coefficient (R2) 
between range 0.9065 to 0.9602 
which mean high precision for 
linear fitting. The linear 
equation and the value of 
correlation coefficient is shown 
in Table 9 for RON 95, RON 97 
and RON 100. 
 

Table 9: Correlation and coefficient 
for fuel RON 95, RON 97 and RON 

100 
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Fuel Linear 
equation 

Correlation 
coefficient 

(R2) 
95 y = 0.0834x - 

0.0494 
0.9602 

97 y = 0.0741x - 
0.0539 

0.9065 

100 y = 0.0759x - 
0.038 

0.9394 

 
From the result of correlation 

coefficient, it is understood that 
RON 97 has a lower value 
compared to RON 95 and RON 
100. The linear trendline was 
chosen because the correlation 
coefficient of the fuels was in 
good value at range between 0 
and 1. 
 
B. RMSE and MAPE 

RMSE (Root Mean Square 
Error) and MAPE (Mean 
Absolute Percentage Error) 
analysis can measure how well 
the fuels perform and predict 
which are suitable fuel for the 
engine. Table 10, 11, 12 and 13 
show the value of RMSE and 
MAPE for root mean square, 
standard deviation, kurtosis and 
skewness. 

 
Table 10: RMSE and MAPE value for 

root mean square 
Fuel RMSE MAPE 
95 0.195126 0.757553 
97 0.118096 0.677735 

100 0.133750 0.719733 
 

Table 11: RMSE and MAPE value for 
standard deviation 

Fuel RMSE MAPE 
95 0.148971 0.975864 
97 0.137269 0.687221 
100 0.137646 0.844116 

 
Table 12: RMSE and MAPE value for 

kurtosis 
Fuel RMSE MAPE 
95 0.59033 0.126353 
97 0.292793 0.078652 
100 0.312724 0.077669 

 
Table 13: RMSE and MAPE value for 

skewness 
Fuel RMSE MAPE 
95 0.062135 0.585442 
97 0.017148 0.096417 
100 0.035022 0.530850 

 
From the tables above, the 

value for MAPE is not precision 
at fuel 95, fuel 97 and fuel 100. 
For instance, value MAPE for 
root mean square at fuel 95, fuel 
97 and fuel 100 are 0.757533, 
0.677735 and 0.719733 while 
value MAPE for kurtosis at fuel 
95, fuel 97 and fuel 100 are 
0.126353, 0.078652 and 
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and fuel 100 have higher value 
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0.677735 and 0.719733 while 
value MAPE for kurtosis at fuel 
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0.126353, 0.078652 and 
0.077669. It shown that the 
value of MAPE at root mean 
square and kurtosis for fuel 97 
and fuel 100 have higher value 
fluctuating compared to fuel 95. 

Thus it was quite difficult to 
analyze the performance for 
both fuels. The different value of 
MAPE are not depend on the 
developed system and database, 
but also affected by the 
condition of the recorded cutting 
force signal and vibration [12] at 
the component that close to the 
engine. 

The RMSE reading for fuel 97 
and fuel 100 are nearly similar. 
The RMSE of standard deviation 
at Table 11 for fuel 97 and fuel 
100 is 0.137269 and 0.137646. 
The value has 0.0004 difference 
between them. RMSE for fuel 95 
is always high for all statistical 
analysis. It showed that fuel 95 
is not suitable for the engine and 
can cause fault and engine break 
down. 

The higher the octane number, 
the higher the performance 
occurred and the higher 
compression ratio improves 
efficiency in the absence of 
knock [5]. Octane called as an 
anti-knocking because of the 
ability to resist knocking when 
used in the engine. Engine 
N43B20 required a high 
compression ratio as shown in 
the result obtained. It also is 

shown that fuel 95 give a lower 
ignition resistance during a 
combustion processed. This 
shows that fuel 95 is not suitable 
for the engine with high 
compression ratio. Putting a 
lower octane fuel to the high 
compression engine can produce 
a premature ignition that can 
create a knocking sound from 
time to time. Knock is a 
fundamentally chemical process 
initiated by pre-flame reactions 
leading to auto ignition. Using 
the lower octane fuel can reduce 
the efficiency and performance 
of the engine. It is also can 
damage the engine with carbon 
deposits [13].  

From the results, it shows fuel 
100 having a problem to the 
engine N43B20. The 
performance of fuel 97 is better 
for the engine compare to fuel 
100. Figure 8 and Figure 9 show 
the fuel 97 is more suitable 
compared to fuel 100. To prove 
that, Table 12 and Table 13 show 
the value of RMSE and MAPE 
for fuel 97 are smaller compared 
to fuel 100. This proved that the 
compression ratio of engine 
N43B20 is not fitted with the 
fuel 100. 
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a premature ignition that can 
create a knocking sound from 
time to time. Knock is a 
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initiated by pre-flame reactions 
leading to auto ignition. Using 
the lower octane fuel can reduce 
the efficiency and performance 
of the engine. It is also can 
damage the engine with carbon 
deposits [13].  

From the results, it shows fuel 
100 having a problem to the 
engine N43B20. The 
performance of fuel 97 is better 
for the engine compare to fuel 
100. Figure 8 and Figure 9 show 
the fuel 97 is more suitable 
compared to fuel 100. To prove 
that, Table 12 and Table 13 show 
the value of RMSE and MAPE 
for fuel 97 are smaller compared 
to fuel 100. This proved that the 
compression ratio of engine 
N43B20 is not fitted with the 
fuel 100. 
V. Conclusion 

With the different number of 
octanes, it can give an impact to 
the vibration acceleration. The 
amplitude of the frequency 
shows something wrong with the 
engine when running the 
unsuitable fuel in the engine. 
Engine durability, fuel 
consumption and power density, 
as well as noise and emission 
performance, are related to the 
spark ignition. The ‘knock’ 
ignition is one of the main 
causes that can give effect to the 
high amplitude [14, 15].  To 
support the statement, the result 
of RMSE and MAPE show the 
performance error between these 
fuels.  

In conclusion, the evaluation 
by using vibration analysis is not 
only to measure the performance 
of the engine, but it is also 
having the potential to detect 
faults when the engine is under 
full running.  From MAPE 
values, it is clearly indicated that 
RON 97 and RON 100 is the best 
fuel types for engine N43B20 
due to the smallest error 
generated. By comparing the 
RMSE result, it is proven that 
RMSE value for RON 97 is 

suitable compared to RON 95 
and RON 100. By considering 
the analysis of RMSE and 
MAPE, the result is more valid 
to decide that RON 97 is the 
most suitable for best engine 
performance due to smaller error 
occurred [16, 17, 18]. 
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ignition is one of the main 
causes that can give effect to the 
high amplitude [14, 15].  To 
support the statement, the result 
of RMSE and MAPE show the 
performance error between these 
fuels.  

In conclusion, the evaluation 
by using vibration analysis is not 
only to measure the performance 
of the engine, but it is also 
having the potential to detect 
faults when the engine is under 
full running.  From MAPE 
values, it is clearly indicated that 
RON 97 and RON 100 is the best 
fuel types for engine N43B20 
due to the smallest error 
generated. By comparing the 
RMSE result, it is proven that 
RMSE value for RON 97 is 

suitable compared to RON 95 
and RON 100. By considering 
the analysis of RMSE and 
MAPE, the result is more valid 
to decide that RON 97 is the 
most suitable for best engine 
performance due to smaller error 
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Engine durability, fuel 
consumption and power density, 
as well as noise and emission 
performance, are related to the 
spark ignition. The ‘knock’ 
ignition is one of the main 
causes that can give effect to the 
high amplitude [14, 15].  To 
support the statement, the result 
of RMSE and MAPE show the 
performance error between these 
fuels.  

In conclusion, the evaluation 
by using vibration analysis is not 
only to measure the performance 
of the engine, but it is also 
having the potential to detect 
faults when the engine is under 
full running.  From MAPE 
values, it is clearly indicated that 
RON 97 and RON 100 is the best 
fuel types for engine N43B20 
due to the smallest error 
generated. By comparing the 
RMSE result, it is proven that 
RMSE value for RON 97 is 

suitable compared to RON 95 
and RON 100. By considering 
the analysis of RMSE and 
MAPE, the result is more valid 
to decide that RON 97 is the 
most suitable for best engine 
performance due to smaller error 
occurred [16, 17, 18]. 
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