
ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Implementation of Minimized March SR Algorithm in A Memory BIST Controller

67

1
This is an open-access journal that the content is freely available without charge to the user or
corresponding institution licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

ISSN: 2180-3811 Vol. 13 No. 2

IMPLEMENTATION OF MINIMIZED MARCH SR
ALGORITHM IN A MEMORY BIST CONTROLLER
A. Z. Jidin*1,2, R. Hussin1, M. S. Mispan2, W. F. Lee3, and N. A. Zakaria4

1 Faculty of Electronics Engineering and Technology, Universiti Malaysia
Perlis, 02600 Arau, Malaysia.

2 Faculty of Electrical and Electronic Engineering Technology, Universiti
Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia.
3 Emerald System Design Center, 11900 Bayan Lepas, Pulau Pinang,

Malaysia.
4 UST Global Sdn Bhd, 11900 Bayan Lepas, Pulau Pinang, Malaysia.

*corresponding_aimanzakwan@utem.edu.my

Article history:
Received Date:
1 September
2022
Revised Date:
23 November
2022
Accepted Date:
12 December
2022

Keywords: Design
For Testability,
March Algorithm,

Abstract— Memory Built-In Self-Test
(MBIST) is essential in testing memories on
a chip. Its efficiency depends on its fault
coverage and the complexity of the
algorithm used, which defines the test
sequence to be applied to every cell of the
memory under the test. This paper presents
the implementation of a minimized-
complexity March SR algorithm in an MBIST
controller for detecting unlinked static faults
in an SRAM. It was implemented as a User-
Defined Algorithm (UDA), which was hard-
coded in the MBIST controller. The
simulations validated its functionality and

ISSN 2180-3811 eISSN 2289-814X https://jet.utem.edu.my/jet/index

Journal of Engineering and Technology

1
This is an open-access journal that the content is freely available without charge to the user or
corresponding institution licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

ISSN: 2180-3811 Vol. 13 No. 2

IMPLEMENTATION OF MINIMIZED MARCH SR
ALGORITHM IN A MEMORY BIST CONTROLLER
A. Z. Jidin*1,2, R. Hussin1, M. S. Mispan2, W. F. Lee3, and N. A. Zakaria4

1 Faculty of Electronics Engineering and Technology, Universiti Malaysia
Perlis, 02600 Arau, Malaysia.

2 Faculty of Electrical and Electronic Engineering Technology, Universiti
Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia.
3 Emerald System Design Center, 11900 Bayan Lepas, Pulau Pinang,

Malaysia.
4 UST Global Sdn Bhd, 11900 Bayan Lepas, Pulau Pinang, Malaysia.

*corresponding_aimanzakwan@utem.edu.my

Article history:
Received Date:
1 September
2022
Revised Date:
23 November
2022
Accepted Date:
12 December
2022

Keywords: Design
For Testability,
March Algorithm,

Abstract— Memory Built-In Self-Test
(MBIST) is essential in testing memories on
a chip. Its efficiency depends on its fault
coverage and the complexity of the
algorithm used, which defines the test
sequence to be applied to every cell of the
memory under the test. This paper presents
the implementation of a minimized-
complexity March SR algorithm in an MBIST
controller for detecting unlinked static faults
in an SRAM. It was implemented as a User-
Defined Algorithm (UDA), which was hard-
coded in the MBIST controller. The
simulations validated its functionality and

ISSN 2180-3811 eISSN 2289-814X https://jet.utem.edu.my/jet/index

Journal of Engineering and Technology

1
This is an open-access journal that the content is freely available without charge to the user or
corresponding institution licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

ISSN: 2180-3811 Vol. 13 No. 2

IMPLEMENTATION OF MINIMIZED MARCH SR
ALGORITHM IN A MEMORY BIST CONTROLLER
A. Z. Jidin*1,2, R. Hussin1, M. S. Mispan2, W. F. Lee3, and N. A. Zakaria4

1 Faculty of Electronics Engineering and Technology, Universiti Malaysia
Perlis, 02600 Arau, Malaysia.

2 Faculty of Electrical and Electronic Engineering Technology, Universiti
Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia.
3 Emerald System Design Center, 11900 Bayan Lepas, Pulau Pinang,

Malaysia.
4 UST Global Sdn Bhd, 11900 Bayan Lepas, Pulau Pinang, Malaysia.

*corresponding_aimanzakwan@utem.edu.my

Article history:
Received Date:
1 September
2022
Revised Date:
23 November
2022
Accepted Date:
12 December
2022

Keywords: Design
For Testability,
March Algorithm,

Abstract— Memory Built-In Self-Test
(MBIST) is essential in testing memories on
a chip. Its efficiency depends on its fault
coverage and the complexity of the
algorithm used, which defines the test
sequence to be applied to every cell of the
memory under the test. This paper presents
the implementation of a minimized-
complexity March SR algorithm in an MBIST
controller for detecting unlinked static faults
in an SRAM. It was implemented as a User-
Defined Algorithm (UDA), which was hard-
coded in the MBIST controller. The
simulations validated its functionality and

ISSN 2180-3811 eISSN 2289-814X https://jet.utem.edu.my/jet/index

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Journal of Engineering and Technology

68

Journal of Engineering and Technology

2
ISSN: 2180-3811 Vol. 13 No. 2

Memory BIST,
Memory Fault
Models

fault detection ability, producing similar fault
coverage as the initial March SR algorithm
with a shorter test completion time.

I. Introduction
MBIST is a technique of the

Design for Testability (DFT)
that is very popular for testing
embedded memories on a
System-on-Chip (SoC), owing
to its capability to carry out self-
testing and self-checking the test
responses [1-2]. Since the on-
chip circuitry carries out the
memory test, an expensive high-
performance external tester is no
longer necessary [3]. Moreover,
the test length and cost are
reduced since the test latency
introduced by the external tester
can be minimized. Hence, the
overall test length and cost are
reduced [3-4].

Besides, it is essential to have a
good test quality since the
embedded memories in the more
recent chips may occupy up to
90% of the total chip area [5].
Furthermore, many defects can
randomly occur during the
manufacturing process due to
the compact and dense nature of
the memory [6-7].

MBIST generates the test
sequences to be applied to the
memory under test based on the
selected test algorithm. The
March-series test algorithm is
among the popular choices in the
industry, owing to its ability to
detect many possible faults at a
linear test complexity [8].

The efficiency of a March test
algorithm depends on its test
complexity and fault coverage.
Based on studies, the March
MSS algorithm, with 18N
complexity, is required to detect
all unlinked static faults in a
RAM [9], where N is the size of
the memory under test. However,
it requires a larger chip area and
longer testing time compared to
those with lower complexities,
such as March C- (10N) [10],
March CL (12N) [11], March
LR (14N) [12], and March SR
(14N) [13].

Yet, many of them cannot
detect newer faults introduced
by the Very Deep Submicron
(VDSM) transistor technologies
[7], as shown in Table 1. These

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Implementation of Minimized March SR Algorithm in A Memory BIST Controller

69

Journal of Engineering and Technology

3
ISSN: 2180-3811 Vol. 13 No. 2

include the Deceptive Read
Destructive Fault (DRDF) and
the Deceptive Read Destructive

Coupling Fault (CFdrd), which
are more relevant to nowadays
memory technologies.

Table 1: Fault Coverage of Several March Algorithms (F: Full Coverage, H: Half

Coverage, 0: No Coverage)

Fault Type
March

C-
(10N)

March
CL

(12N)

March
LR

(14N)

March
SR

(14N)
Stuck-At (SAF) F F F F
Transition (TF) F F F F

Read Destructive (RDF) F F F F
Incorrect Read (IRF) F F F F

Deceptive Read Destructive (DRDF) 0 H 0 F
Transition Coupling (CFtr) F F F F

Deceptive Read Destructive Coupling
(CFdrd) 0 H 0 H

Several previous works were

proposed to reduce the
complexity of the existing
March algorithms. Research in
[10] removed a redundant read
operation in the March C test
sequence and reduced its
complexity to 10N to become
the March C-. Its complexity
was further reduced to 8N in
[14] by rearranging its test
sequence into two concurrent
subgroups that are executed in
parallel. Somehow, they did not
introduce any improvement to
cover the undetectable DRDF
and CFdrd. Therefore, a new
minimized March SR algorithm,

also known as the March mSR,
was introduced [15]. It has 1N
complexity less than the initial
March SR algorithm, with the
test sequence ⇕(w0); ⇑(r0, w1,
r1, w0); ⇑(r0, r0); ⇑(w1); ⇓(r1,
w0, r0, w1); ⇓(r1, r1), by
removing a read operation
identified as redundant for
detecting the intended faults.

Hence, this paper presents the
implementation of the March
mSR algorithm in MBIST
controller hardware. It was done
using the Mentor Graphic
Tessent MemoryBIST software
to hard-code the algorithm test
sequence inside the MBIST

Journal of Engineering and Technology

3
ISSN: 2180-3811 Vol. 13 No. 2

include the Deceptive Read
Destructive Fault (DRDF) and
the Deceptive Read Destructive

Coupling Fault (CFdrd), which
are more relevant to nowadays
memory technologies.

Table 1: Fault Coverage of Several March Algorithms (F: Full Coverage, H: Half

Coverage, 0: No Coverage)

Fault Type
March

C-
(10N)

March
CL

(12N)

March
LR

(14N)

March
SR

(14N)
Stuck-At (SAF) F F F F
Transition (TF) F F F F

Read Destructive (RDF) F F F F
Incorrect Read (IRF) F F F F

Deceptive Read Destructive (DRDF) 0 H 0 F
Transition Coupling (CFtr) F F F F

Deceptive Read Destructive Coupling
(CFdrd) 0 H 0 H

Several previous works were

proposed to reduce the
complexity of the existing
March algorithms. Research in
[10] removed a redundant read
operation in the March C test
sequence and reduced its
complexity to 10N to become
the March C-. Its complexity
was further reduced to 8N in
[14] by rearranging its test
sequence into two concurrent
subgroups that are executed in
parallel. Somehow, they did not
introduce any improvement to
cover the undetectable DRDF
and CFdrd. Therefore, a new
minimized March SR algorithm,

also known as the March mSR,
was introduced [15]. It has 1N
complexity less than the initial
March SR algorithm, with the
test sequence ⇕(w0); ⇑(r0, w1,
r1, w0); ⇑(r0, r0); ⇑(w1); ⇓(r1,
w0, r0, w1); ⇓(r1, r1), by
removing a read operation
identified as redundant for
detecting the intended faults.

Hence, this paper presents the
implementation of the March
mSR algorithm in MBIST
controller hardware. It was done
using the Mentor Graphic
Tessent MemoryBIST software
to hard-code the algorithm test
sequence inside the MBIST

Journal of Engineering and Technology

3
ISSN: 2180-3811 Vol. 13 No. 2

include the Deceptive Read
Destructive Fault (DRDF) and
the Deceptive Read Destructive

Coupling Fault (CFdrd), which
are more relevant to nowadays
memory technologies.

Table 1: Fault Coverage of Several March Algorithms (F: Full Coverage, H: Half

Coverage, 0: No Coverage)

Fault Type
March

C-
(10N)

March
CL

(12N)

March
LR

(14N)

March
SR

(14N)
Stuck-At (SAF) F F F F
Transition (TF) F F F F

Read Destructive (RDF) F F F F
Incorrect Read (IRF) F F F F

Deceptive Read Destructive (DRDF) 0 H 0 F
Transition Coupling (CFtr) F F F F

Deceptive Read Destructive Coupling
(CFdrd) 0 H 0 H

Several previous works were

proposed to reduce the
complexity of the existing
March algorithms. Research in
[10] removed a redundant read
operation in the March C test
sequence and reduced its
complexity to 10N to become
the March C-. Its complexity
was further reduced to 8N in
[14] by rearranging its test
sequence into two concurrent
subgroups that are executed in
parallel. Somehow, they did not
introduce any improvement to
cover the undetectable DRDF
and CFdrd. Therefore, a new
minimized March SR algorithm,

also known as the March mSR,
was introduced [15]. It has 1N
complexity less than the initial
March SR algorithm, with the
test sequence ⇕(w0); ⇑(r0, w1,
r1, w0); ⇑(r0, r0); ⇑(w1); ⇓(r1,
w0, r0, w1); ⇓(r1, r1), by
removing a read operation
identified as redundant for
detecting the intended faults.

Hence, this paper presents the
implementation of the March
mSR algorithm in MBIST
controller hardware. It was done
using the Mentor Graphic
Tessent MemoryBIST software
to hard-code the algorithm test
sequence inside the MBIST

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Journal of Engineering and Technology

70

Journal of Engineering and Technology

4
ISSN: 2180-3811 Vol. 13 No. 2

controller. It was then simulated
in the Questasim simulator to
validate its functionality and
fault detection capability.

Section II describes the test
sequence and fault coverage of
the March mSR algorithm. Next,
Section III discusses the
methods used to perform the
MBIST insertion process by
implementing the March mSR
algorithm as the UDA. Finally,
Section IV presents and
discusses the results obtained
from the simulations performed
on the generated MBIST
controller. This paper focuses on
detecting 26 Fault Primitives
(FP) of the following faults:

SAF (2 FPs), TF (2 FPs), RDF (2
FPs), IRF (2 FPs), DRDF (2
FPs), CFtr (8 FPs), and CFdrd (8
FPs).

II. March mSR Algorithm

Description
March mSR algorithm consists

of the following test sequence:
⇕(w0); ⇑(w1, r1, w0); ⇑(r0, r0);
⇑(w1); ⇓(r1, w0, r0, w1); ⇓(r1,
r1). It has in total of 13 test
operations. Hence, its
complexity equals 13N. It
consists of 6 test elements,
notated as Ei where i = {0, 1, 2,
3, 4, 5}. Table 2 describes the
test sequence of each test
element.

Table 2: March mSR Description

Test
Element E

Test
Operations

Description

0 ⇕ w0) Each cell is written to 0 in any address direction.

1 ⇑ w1, r1,
w0)

Each cell is written to 1, read (expecting 0), and
rewritten to 0, starting from the cell with the minimum
memory address (ascending address order).

2 ⇑ r0, r0)
Each cell is consecutively read twice (expecting 0) in
the ascending address order.

3 ⇑ w1) Each cell is written to 1 in the ascending address order.

4 ⇓ r1, w0, r0,
w1)

Each cell is read (expecting 1), written to 0, reread
(expecting 0), and rewritten to 1, starting from the cell
with the maximum memory address (descending
address order).

5 ⇓ r1, r1)
Each cell is consecutively read twice (expecting 1) in
the descending address order.

Journal of Engineering and Technology

4
ISSN: 2180-3811 Vol. 13 No. 2

controller. It was then simulated
in the Questasim simulator to
validate its functionality and
fault detection capability.

Section II describes the test
sequence and fault coverage of
the March mSR algorithm. Next,
Section III discusses the
methods used to perform the
MBIST insertion process by
implementing the March mSR
algorithm as the UDA. Finally,
Section IV presents and
discusses the results obtained
from the simulations performed
on the generated MBIST
controller. This paper focuses on
detecting 26 Fault Primitives
(FP) of the following faults:

SAF (2 FPs), TF (2 FPs), RDF (2
FPs), IRF (2 FPs), DRDF (2
FPs), CFtr (8 FPs), and CFdrd (8
FPs).

II. March mSR Algorithm

Description
March mSR algorithm consists

of the following test sequence:
⇕(w0); ⇑(w1, r1, w0); ⇑(r0, r0);
⇑(w1); ⇓(r1, w0, r0, w1); ⇓(r1,
r1). It has in total of 13 test
operations. Hence, its
complexity equals 13N. It
consists of 6 test elements,
notated as Ei where i = {0, 1, 2,
3, 4, 5}. Table 2 describes the
test sequence of each test
element.

Table 2: March mSR Description

Test
Element E

Test
Operations

Description

0 ⇕ w0) Each cell is written to 0 in any address direction.

1 ⇑ w1, r1,
w0)

Each cell is written to 1, read (expecting 0), and
rewritten to 0, starting from the cell with the minimum
memory address (ascending address order).

2 ⇑ r0, r0)
Each cell is consecutively read twice (expecting 0) in
the ascending address order.

3 ⇑ w1) Each cell is written to 1 in the ascending address order.

4 ⇓ r1, w0, r0,
w1)

Each cell is read (expecting 1), written to 0, reread
(expecting 0), and rewritten to 1, starting from the cell
with the maximum memory address (descending
address order).

5 ⇓ r1, r1)
Each cell is consecutively read twice (expecting 1) in
the descending address order.

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Implementation of Minimized March SR Algorithm in A Memory BIST Controller

71

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. 13 No. 2

While Table 3 summarizes its
coverage of the intended faults
obtained using a fault detection
analyzer [15]. It has 50%
coverage of CFdrd and 100%
coverage of the remaining faults.
Therefore, it has a total fault
coverage of 84.6%, where it can
detect 22 FPs out of a possible
26. It provides the same fault
coverage as the March SR
algorithm, even with lesser 1N
complexity [15].

Table 3: March mSR Fault Coverage

Fault Type Coverage
SAF 2/2 (100%)
TF 2/2 (100%)

RDF 2/2 (100%)
IRF 2/2 (100%)

DRDF 2/2 (100%)
CFtr 8/8 (100%)

CFdrd 4/8 (50%)
Total Fault
Coverage

22/36 (84.6%)

III. Research Methodology

The flowchart shown in Figure
1 depicts the overall flow of the
proposed implementation of the
March mSR algorithm in an
MBIST controller as the User-
Defined Algorithm (UDA).
Firstly, a Tessent Core
Description (TCD) file was
developed to define the test

sequence of the UDA to be
implemented into the MBIST
controller. It was written in a
format recognized by the Mentor
Graphic Tessent MemoryBIST
software, used for the MBIST
insertion process.

Figure 1: The Flow of the

Proposed Research Methodology

The developed TCD file
consists of the declaration of the
UDA (in this case, it was named

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. 13 No. 2

While Table 3 summarizes its
coverage of the intended faults
obtained using a fault detection
analyzer [15]. It has 50%
coverage of CFdrd and 100%
coverage of the remaining faults.
Therefore, it has a total fault
coverage of 84.6%, where it can
detect 22 FPs out of a possible
26. It provides the same fault
coverage as the March SR
algorithm, even with lesser 1N
complexity [15].

Table 3: March mSR Fault Coverage

Fault Type Coverage
SAF 2/2 (100%)
TF 2/2 (100%)

RDF 2/2 (100%)
IRF 2/2 (100%)

DRDF 2/2 (100%)
CFtr 8/8 (100%)

CFdrd 4/8 (50%)
Total Fault
Coverage

22/36 (84.6%)

III. Research Methodology

The flowchart shown in Figure
1 depicts the overall flow of the
proposed implementation of the
March mSR algorithm in an
MBIST controller as the User-
Defined Algorithm (UDA).
Firstly, a Tessent Core
Description (TCD) file was
developed to define the test

sequence of the UDA to be
implemented into the MBIST
controller. It was written in a
format recognized by the Mentor
Graphic Tessent MemoryBIST
software, used for the MBIST
insertion process.

Figure 1: The Flow of the

Proposed Research Methodology

The developed TCD file
consists of the declaration of the
UDA (in this case, it was named

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. 13 No. 2

While Table 3 summarizes its
coverage of the intended faults
obtained using a fault detection
analyzer [15]. It has 50%
coverage of CFdrd and 100%
coverage of the remaining faults.
Therefore, it has a total fault
coverage of 84.6%, where it can
detect 22 FPs out of a possible
26. It provides the same fault
coverage as the March SR
algorithm, even with lesser 1N
complexity [15].

Table 3: March mSR Fault Coverage

Fault Type Coverage
SAF 2/2 (100%)
TF 2/2 (100%)

RDF 2/2 (100%)
IRF 2/2 (100%)

DRDF 2/2 (100%)
CFtr 8/8 (100%)

CFdrd 4/8 (50%)
Total Fault
Coverage

22/36 (84.6%)

III. Research Methodology

The flowchart shown in Figure
1 depicts the overall flow of the
proposed implementation of the
March mSR algorithm in an
MBIST controller as the User-
Defined Algorithm (UDA).
Firstly, a Tessent Core
Description (TCD) file was
developed to define the test

sequence of the UDA to be
implemented into the MBIST
controller. It was written in a
format recognized by the Mentor
Graphic Tessent MemoryBIST
software, used for the MBIST
insertion process.

Figure 1: The Flow of the

Proposed Research Methodology

The developed TCD file
consists of the declaration of the
UDA (in this case, it was named

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. 13 No. 2

While Table 3 summarizes its
coverage of the intended faults
obtained using a fault detection
analyzer [15]. It has 50%
coverage of CFdrd and 100%
coverage of the remaining faults.
Therefore, it has a total fault
coverage of 84.6%, where it can
detect 22 FPs out of a possible
26. It provides the same fault
coverage as the March SR
algorithm, even with lesser 1N
complexity [15].

Table 3: March mSR Fault Coverage

Fault Type Coverage
SAF 2/2 (100%)
TF 2/2 (100%)

RDF 2/2 (100%)
IRF 2/2 (100%)

DRDF 2/2 (100%)
CFtr 8/8 (100%)

CFdrd 4/8 (50%)
Total Fault
Coverage

22/36 (84.6%)

III. Research Methodology

The flowchart shown in Figure
1 depicts the overall flow of the
proposed implementation of the
March mSR algorithm in an
MBIST controller as the User-
Defined Algorithm (UDA).
Firstly, a Tessent Core
Description (TCD) file was
developed to define the test

sequence of the UDA to be
implemented into the MBIST
controller. It was written in a
format recognized by the Mentor
Graphic Tessent MemoryBIST
software, used for the MBIST
insertion process.

Figure 1: The Flow of the

Proposed Research Methodology

The developed TCD file
consists of the declaration of the
UDA (in this case, it was named

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Journal of Engineering and Technology

72

Journal of Engineering and Technology

6
ISSN: 2180-3811 Vol. 13 No. 2

march_mSR), the test setup, e.g.,
the selection of the test operation
set and the initial memory
address, and the description of

the test sequence to be applied
during each test element, as
shown in Figure 2.

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Implementation of Minimized March SR Algorithm in A Memory BIST Controller

73

Journal of Engineering and Technology

7
ISSN: 2180-3811 Vol. 13 No. 2

Figure 2: The TCD file for the March mSR algorithm

WriteWriteFastRow
defines the sequential write
operation at each clock cycle

(wxwx), while ReadRead
defines double read operations at
consecutive clock cycles (rxrx).

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Journal of Engineering and Technology

74

Journal of Engineering and Technology

8
ISSN: 2180-3811 Vol. 13 No. 2

ReadModifyWrite allows a
read to be performed on the
memory cell before overwriting
it to the opposite value and
rereading it (rxwx’rx’). Finally,
WriteReadWriteInvert
performs a write operation to the
cell followed by a read before
another write operation to the
opposite value (wxrxwx’). The
data to be read or written can be
either DataReg (logic 0) or
InverseDataReg (logic 1).

Specifically for E4, with test
sequence ⇓(r1, w0, r0, w1), it
was described using two
instructions, M4_r1w0 and
M4_r0w1, since the
TessentSyncRamOps only
includes operations sets with a
maximum of three read or write
operations. M4_r0w1
instruction was branched to
M4r1w0 using the
BranchToInstruction
command.

The implementation of the
UDA used the hard-coded
method instead of the soft-coded
one since the former offers
design simplicity compared to
the latter [16]. In addition, the
ability to change the test

algorithm during the program
execution is not necessary for
this research.

During the MBIST controller
insertion process, the developed
TCD file was read by the
software mentioned earlier,
which hard-coded the defined
test sequences in the MBIST
controller hardware in Verilog
Hardware Description Language
(HDL).

Once the intended MBIST
controller was generated, it
underwent two simulations to
validate its functionality and
fault detection ability. These
simulations were carried out
using the test benches and test
patterns generated by the
software upon completing the
MBIST controller insertion
process.

Should any errors be found
during the simulations, the
possible mistake(s) in the TCD
file was fixed before repeating
the MBIST insertion process and
the simulations.

IV. Results and Discussion
A. March mSR

Implementation in
MBIST

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Implementation of Minimized March SR Algorithm in A Memory BIST Controller

75

Journal of Engineering and Technology

9
ISSN: 2180-3811 Vol. 13 No. 2

Upon completion of the
MBIST controller insertion, the
generated MBIST controller was
synthesized in Mentor Graphic
Oasys-RTL software using the
130 nm CMOS process
technology. Then, it was
compared to the controller that
implemented the initial March
SR algorithm as the UDA
regarding the chip area
occupation and power
consumption.

As shown in Table 4, the
MBIST controller with the

initial March SR as the UDA has
a slightly lower area and power
consumption, despite having a
1N complexity higher than the
proposed March mSR. It has a
more symmetrical test sequence
structure than the latter, where
its test elements E0 – E2 are
symmetrical to E3 – E5,
respectively. Hence, they can
share the same hardware
resources and only need to invert
the test bits and test address
orders.

Table 4: MBIST Controller Synthesis Report

MBIST UDA Area (µm2) Power (mW)

March SR (14N) 10535 11.63
March mSR (13N) 10563 11.69

Oasys-RTL software using the

130 nm CMOS process
technology. Then, it was
compared to the controller that
implemented the initial March
SR algorithm as the UDA
regarding the chip area
occupation and power
consumption.

As shown in Table 4, the
MBIST controller with the
initial March SR as the UDA has
a slightly lower area and power

consumption, despite having a
1N complexity higher than the
proposed March mSR. It has a
more symmetrical test sequence
structure than the latter, where
its test elements E0 – E2 are
symmetrical to E3 – E5,
respectively. Hence, they can
share the same hardware
resources and only need to invert
the test bits and test address
orders.

Journal of Engineering and Technology

9
ISSN: 2180-3811 Vol. 13 No. 2

Upon completion of the
MBIST controller insertion, the
generated MBIST controller was
synthesized in Mentor Graphic
Oasys-RTL software using the
130 nm CMOS process
technology. Then, it was
compared to the controller that
implemented the initial March
SR algorithm as the UDA
regarding the chip area
occupation and power
consumption.

As shown in Table 4, the
MBIST controller with the

initial March SR as the UDA has
a slightly lower area and power
consumption, despite having a
1N complexity higher than the
proposed March mSR. It has a
more symmetrical test sequence
structure than the latter, where
its test elements E0 – E2 are
symmetrical to E3 – E5,
respectively. Hence, they can
share the same hardware
resources and only need to invert
the test bits and test address
orders.

Table 4: MBIST Controller Synthesis Report

MBIST UDA Area (µm2) Power (mW)

March SR (14N) 10535 11.63
March mSR (13N) 10563 11.69

Oasys-RTL software using the

130 nm CMOS process
technology. Then, it was
compared to the controller that
implemented the initial March
SR algorithm as the UDA
regarding the chip area
occupation and power
consumption.

As shown in Table 4, the
MBIST controller with the
initial March SR as the UDA has
a slightly lower area and power

consumption, despite having a
1N complexity higher than the
proposed March mSR. It has a
more symmetrical test sequence
structure than the latter, where
its test elements E0 – E2 are
symmetrical to E3 – E5,
respectively. Hence, they can
share the same hardware
resources and only need to invert
the test bits and test address
orders.

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Journal of Engineering and Technology

76

Journal of Engineering and Technology

10
ISSN: 2180-3811 Vol. 13 No. 2

While in the case of the March
mSR, E1 and E4 are not
symmetry and, thus, are not
sharing the hardware.
Consequently, it consumes more
power since it has more logic
gates actively switching during
the operation.

B. Validation via Functional

Simulation
The MBIST controllers’

functionality was validated via
simulations in the QuestaSim
simulator, using a 1KB Single-
Port SRAM as the memory
model (N = 1024) and a 20 ns
clock as the system clock clk. By
observing the resulting
waveforms shown in Figure 3,
the ERROR flag stayed at a low
level throughout both
simulations, which means that
no mismatch has occurred
between the observed read value

(dout) and the expected value
(BIST_EXPECT_DATA).

Regarding the simulation test
completion time, 266.24 µs was
required to complete the test
using the March mSR algorithm.
Based on Equation (1), a
complexity O of 13 was derived,
which equals its expected
complexity. It also proves that it
produces 20.48 µs or 1N clock
cycles faster test than the March
SR algorithm, which required
286.72 µs for completion. The
difference in the completion
time is more significant for a
larger memory (e.g., 1 MB
SRAM), which may have more
impact on the overall chip
testing time and production cost.

𝑂𝑂 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁 ∗ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (1)

(a)

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Implementation of Minimized March SR Algorithm in A Memory BIST Controller

77

Journal of Engineering and Technology

11
ISSN: 2180-3811 Vol. 13 No. 2

(b)

Figure 3: The waveforms of the simulation on the MBIST controllers that
implemented: (a) March mSR algorithm, (b) March SR algorithm

C. Validation via Fault

Detection Simulation
Next, a similar simulation was

carried out on the MBIST
controller with the March mSR
as the UDA but using a faulty 1
KB Single-Port SRAM as the
memory model. The purpose
was to replicate the fault
occurrences at the simulation
level and validate the March
mSR fault coverage. In this case,
the addresses of all faulty or

victim cells and aggressor cells
were arbitrarily chosen. Its fault
coverage was derived by
observing the values of 26 bits
from 7 fault detection flags at the
end of the simulation: saf_detect,
tf_detect, irf_detect, rdf_detect,
drdf_detect, cftr_detect, and
cfdrd_detect, as shown in Figure
4. A high bit indicates that the
occurrence of the FP that it
represents is detected during this
simulation.

Figure 4: The March mSR fault detection simulation waveform

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Journal of Engineering and Technology

78

Journal of Engineering and Technology

12
ISSN: 2180-3811 Vol. 13 No. 2

As shown in Table 5, which
derived the fault detection flags’
values from the simulation
waveform in Figure 4, all FPs of
SAF, TF, RDF, IRF, DRDF, and
CFtr are detectable, and hence, it
has 100% of these faults. While
it only has 50% coverage of

CFdrd since only 4 FPs of CFdrd
are detectable. Therefore, these
results validated the fault
coverage of the implemented
March mSR algorithm since its
observed fault coverage in Table
5 is similar to its expected fault
coverage shown in Table 3.

Table 5: Derived March mSR Fault Coverage from the Fault Detection Simulation

Fault Detection Flag Value Derived Fault Coverage

SAF 11 2/2 (100%)
TF 11 2/2 (100%)

RDF 11 2/2 (100%)
IRF 11 2/2 (100%)

DRDF 11 2/2 (100%)
CFtr 11111111 8/8 (100%)

CFdrd 11000011 4/8 (50%)

V. Conclusion
This paper has presented the

implementation of the March
mSR algorithm, a reduced-
complexity March SR, as the
UDA in an MBIST controller.
Its test sequence was described
in a TCD file, which was read
and hard-coded into the MBIST
controller by the Mentor
Graphic Tessent MemoryBIST
software during the MBIST
insertion process. Simulations
were performed on the generated
MBIST controller to validate its
functionality, test time, and fault

coverage. Despite having
slightly higher area and power
consumption than the March SR
algorithm, the proposed March
mSR implementation produced
an N-clock-cycle faster test
while providing identical
coverage of the intended faults.
Subsequently, it reduces the
overall test cost while preserving
its quality.

VI. Acknowledgement

The authors would like to
acknowledge the Faculty of
Electronic Engineering and

Journal of Engineering and Technology

12
ISSN: 2180-3811 Vol. 13 No. 2

As shown in Table 5, which
derived the fault detection flags’
values from the simulation
waveform in Figure 4, all FPs of
SAF, TF, RDF, IRF, DRDF, and
CFtr are detectable, and hence, it
has 100% of these faults. While
it only has 50% coverage of

CFdrd since only 4 FPs of CFdrd
are detectable. Therefore, these
results validated the fault
coverage of the implemented
March mSR algorithm since its
observed fault coverage in Table
5 is similar to its expected fault
coverage shown in Table 3.

Table 5: Derived March mSR Fault Coverage from the Fault Detection Simulation

Fault Detection Flag Value Derived Fault Coverage

SAF 11 2/2 (100%)
TF 11 2/2 (100%)

RDF 11 2/2 (100%)
IRF 11 2/2 (100%)

DRDF 11 2/2 (100%)
CFtr 11111111 8/8 (100%)

CFdrd 11000011 4/8 (50%)

V. Conclusion
This paper has presented the

implementation of the March
mSR algorithm, a reduced-
complexity March SR, as the
UDA in an MBIST controller.
Its test sequence was described
in a TCD file, which was read
and hard-coded into the MBIST
controller by the Mentor
Graphic Tessent MemoryBIST
software during the MBIST
insertion process. Simulations
were performed on the generated
MBIST controller to validate its
functionality, test time, and fault

coverage. Despite having
slightly higher area and power
consumption than the March SR
algorithm, the proposed March
mSR implementation produced
an N-clock-cycle faster test
while providing identical
coverage of the intended faults.
Subsequently, it reduces the
overall test cost while preserving
its quality.

VI. Acknowledgement

The authors would like to
acknowledge the Faculty of
Electronic Engineering and

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Implementation of Minimized March SR Algorithm in A Memory BIST Controller

79

Journal of Engineering and Technology

13
ISSN: 2180-3811 Vol. 13 No. 2

Technology, Universiti
Malaysia Perlis (UniMAP),
Universiti Teknikal Malaysia
Melaka (UTeM), and the
Ministry of Higher Education
Malaysia for their contribution
and support to this research.

VII. References
[1] R. Manasa, R. Verma, and D.

Koppad, “Implementation of BIST
Technology using March-LR
Algorithm,” in 2019 4th
International Conference on
Recent Trends on Electronics,
Information, Communication
Technology (RTEICT), May 2019,
pp. 1208–1212.

[2] A. K. S. Pundir and O. P. Sharma,
“Fault tolerant reconfigurable
hardware design using BIST on
SRAM: A review,” in 2017
International Conference on
Intelligent Computing and Control
(I2C2), 2017, pp. 1–16.

[3] T. S. N. Kong et al., “An Efficient
March (5n) FSM-Based Memory
Built-In Self Test (MBIST)
Architecture,” in 2021 IEEE
Regional Symposium on Micro
and Nanoelectronics (RSM), 2021,
pp. 76–79.

[4] A. Singh, G. M. Kumar, and A.
Aasti, “Controller Architecture for
Memory BIST Algorithms,” in
2020 IEEE International Students’
Conference on
Electrical,Electronics and

Computer Science (SCEECS),
2020, pp. 1–5.

[5] P. Ramakrishna, T. Vamshika, and
M. Swathi, “FPGA
Implementation of Memory Bists
using Single Interface,” Int. J.
Recent Technol. Eng., vol. 9, no. 3,
pp. 55–58, 2020.

[6] Q. W. Chun, P. W. Leong, C. K.
Yoong, L. I. Ee, and C. G. Chin,
“VHDL Modelling of Low-Cost
Memory Fault Detection Tester,” J.
Eng. Technol. Appl. Phys., vol. 2,
no. 2, pp. 17–23, 2020.

[7] N. A. Zakaria, “Multiple and solid
data background scheme for
testing static single cell faults on
SRAM memories,” Universiti
Putra Malaysia, 2013.

[8] V. S. Chakravarthi, A practical
approach to VLSI System on Chip
(SoC) design : a comprehensive
guide. Bangalore: Springer, 2019.

[9] G. Harutunyan, V. A. Vardanian,
and Y. Zorian, “Minimal march
tests for unlinked static faults in
random access memories,” in
Proceedings of the IEEE VLSI Test
Symposium, 2005, pp. 53–59.

[10] A. J. Van De Goor, “Using march
tests to test SRAMs,” IEEE Des.
Test Comput., vol. 10, no. 1, pp. 8–
14, 1993.

[11] V. A. Vardanian and Y. Zorian, “A
March-based fault location
algorithm for static random access
memories,” in Proceedings of the
Eighth IEEE International On-
Line Testing Workshop (IOLTW
2002), 2002, pp. 256–261.

ISSN: 2180-3811 Vol. 13 No. 2 July - December 2022

Journal of Engineering and Technology

80

Journal of Engineering and Technology

14
ISSN: 2180-3811 Vol. 13 No. 2

[12] A. J. Van De Goor, G. N.
Gaydadjiev, V. G. Mikitjuk, and V.
N. Yarmolik, “March LR: a test for
realistic linked faults,” in
Proceedings of 14th VLSI Test
Symposium, Apr. 1996, pp. 272–
280.

[13] S. Hamdioui and A. J. Van De
Goor, “An experimental analysis
of spot defects in SRAMs: realistic
fault models and tests,” in
Proceedings of the Ninth Asian
Test Symposium, 2000, pp. 131–
138.

[14] M. Parvathi, N. Vasantha, and Ks.
Parasad, “Modified March C-
algorithm for embedded memory
testing,” Int. J. Electr. Comput.
Eng., vol. 2, no. 5, p. 571, 2012.

[15] A. Z. Jidin, R. Hussin, M. S.
Mispan, L. W. Fook, and L. W.
Ying, “Reduced March SR
algorithm for deep-submicron
SRAM testing,” in 2022 IEEE
International Conference on
Semiconductor Electronics (ICSE),
2022, pp. 93–96.

[16] Siemens, “Tessent MemoryBIST
User’s Manual For Use with
Tessent Shell,” 2020.

	00(i)
	00(ii)TOC
	01_V13N2(01-12)
	02_V13N2(13-24)
	03_V13N2(25-38)
	04_V13N2(39-52)
	05_V13N2(53-66)
	06_V13N2(67-80)
	07_V13N2(81-92)
	08_V13N2(93-106)
	09_a-Call for papers
	10_b-Agreement
	11_c-Article form

