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Abstract— Uncertainty analysis, which is 
one of the major elements in Probabilistic 
Safety Assessments (PSA) of Nuclear 
Power Plants (NPP's), involves quantifying 
the uncertainties of the occurrence of 
accident scenarios. The traditional 
approximations used in current PSA models 
are limited, and normally conservative, 
based on not fully accounting for the 
dependence between Minimal Cut Sets 
(MCS). In this work, a mathematical 
development of an approximation method to 
propagate the uncertainty of lognormal 
distributions is carried out by modifying the 
approach suggested by Fenton and 
Wilkinson. When the uncertainties of basic 
events are modelled with lognormal random 
variables, the top event frequency or 
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Fenton-
Wilkinson 

probability is well approximated as the sum 
of the correlated lognormal random 
variables. This study focuses on how to 
minimize or eliminate the adverse effect of 
Rare Event Approximation (RAE) that 
induces the overestimated top event mean 
value. The probability distribution of the 
case study top event presented in this work 
is compared with analyses available in the 
literature using different approaches, such 
as Monte Carlo and Fenton-Wilkinson (FW) 
method. The application of this method to 
propagate uncertainty of lognormal 
distributions results in a better estimation of 
the top event probability distribution. It is 
shown how the cut set information for a 
model can be used together with the analytic 
expression to give closed-form 
approximation for the top event uncertainty 
distribution. This approach appears 
attractive and can provide a reasonable 
approximation, without incurring the 
computational expense.   

 
I. Introduction  

Uncertainties are present in 
PSA of Nuclear Power Plants, as 
incompleteness and imprecision, 
in probabilities of data which 
include, among others, 
components reliability, 
dependencies between plant 
systems, human interactions and 

common cause failures. These 
data are usually represented by 
uncertainty bounds or 
probability density functions 
(pdf), measuring the degree of 
knowledge or confidence in the 
available data. One of the key 
components of uncertainty 
analysis is the quantification of 
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uncertainties in the system 
output performances propagated 
from uncertain inputs, named as 
uncertainty propagation. Many 
uncertainty propagation 
methods have been developed in 
various fields, such as 
simulation-based methods like 
Monte Carlo simulation (MC), 
which is widely used for 
evaluating the uncertainty 
distribution, but for such 
calculations, the computational 
cost becomes prohibitive as the 
number of input random 
variables increases and do not 
readily reveal the dominant 
contributors to the uncertainty. 
When selecting a method for 
uncertainty propagation various 
aspects should be considered 
such as the required level of 
uncertainty quantification, 
accuracy, or confidence level, as 
well as the computational cost or 
efficiency. The present work 
investigates how the 
uncertainties in input 
probabilities can be propagated 
through a PSA model to produce 
output uncertainties that can be 
communicated to decision-
makers and how they can be 
accounted for in the ranking of 

the basic events or components. 
Since the performance of the 
uncertainty propagation 
methods are affected by the 
problem settings such as the type 
of input distribution, the number 
of input random variables and 
the required resolution, it would 
be beneficial to develop an 
appropriate method which fits 
for a specific situation [1]. In this 
work, an analytic method, to 
overcome the challenges of 
uncertainty propagation in a 
PSA model, which is applicable 
when the uncertainties in the 
basic events of the model are 
log-normally distributed is 
developed. The performances of 
the developed approach are 
compared in moment estimation 
and probability density function 
construction with results 
obtained by FW method based 
on order statistics and MC 
method based on sampling order 
and used as a reference. The 
comparison of the frameworks is 
explored by an application to a 
Level 1 NPP PSA benchmark 
problem.   
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II. Methods of Uncertainty 
Quantification used in 
PSA 

Various methods have been 
developed and applied to 
determine the pdf of the top 
event from the pdf's of basic 
events. In theoretical approaches, 
such as variable transformation 
[2], the pdf of the top event is 
synthesized by integrating the 
joint pdf's of basic events [3]. 
Hence, given a set of 𝑛𝑛 
inputs  {𝑋𝑋𝑖𝑖} , the top event 
probability of a specified fault 
tree can be expressed as a 
function, which returns an 
output random variable, denoted 
by 𝑍𝑍 below:   
 
𝑍𝑍 =  𝐹𝐹 (𝑋𝑋1, 𝑋𝑋1, . . . , 𝑋𝑋𝑛𝑛)         (1) 

 
The 𝑛𝑛 inputs {𝑋𝑋𝑖𝑖} are the basic 

events with defined failure 
probabilities. In a PSA model, 
the top event is expressed as a 
logical equation, involving the 
sum of cut sets or Minimal Cut 
Sets (MCSs) that represent 
combinations of basic events. 
Applying the rare event 
approximation, the function 𝐹𝐹 
can be expressed as a multi-
linear function of the form: 

𝐹𝐹 (𝑋𝑋1, … , 𝑋𝑋𝑛𝑛) =  ∑ ∏ 𝑋𝑋𝑖𝑖𝑖𝑖
𝑛𝑛(𝑖𝑖)
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1        

(2) 

In equation (2), each term in 
the summation gives the 
probability of a cut set, where an 
MCS is defined as an irreducible 
combination of elementary 
failures that together result in the 
top event occurring. The integer 
𝑚𝑚 is the total number of cut sets 
in the problem, and 𝑛𝑛(𝑗𝑗) is the 
number of events in the 𝑗𝑗𝑡𝑡ℎ  cut 
set. Among the approximate 
methods, such as: (i) analytical 
methods (Fenton-Wilkinson), 
(ii) fuzzy arithmetic, (iii) 
Dempster-Shafer Theory 
(evidence theory), (iv) and 
Monte Carlo simulations, the 
Monte Carlo simulation is most 
widely used in practice, owing to 
its ease of application to large-
scale models of complex 
systems [4]. This technique 
provides an efficient and 
straightforward way for 
propagating uncertainties. 
However, Monte Carlo 
simulation has inherent 
limitations as a simulation-based 
approach, it can be inaccurate if 
the number of samples is not 
large enough, and it can be 



ISSN: 2180-3811         Vol. 14     No. 2    July - December 2023

Uncertainty Propagation in Probabilistic Safety Analysis Using Lognormal Distribution

221

Journal of Engineering and Technology 

5 
ISSN: 2180-3811 Vol. XX No. X 

 

limited by computational costs. 
Furthermore, analytical methods 
consist in obtaining the 
distribution of the output of a 
model starting from probability 
distribution of input parameters. 
An analytical distribution of the 
output, however, can be derived 
only for specific models such as 
normal or log-normal 
distributions [5]. Moreover, 
analytic solutions provide 
deeper insights into an 
uncertainty analysis, thus 
providing better explanations of 
the numerical results [6]. This 
kind of closed form is helpful, 
when more detailed uncertainty 
analyses are required, for 
instance, in parametric studies 
involving uncertainty 
importance assessments, which 
require re-estimating the overall 
uncertainty distribution many 
times. 

III. Top Event Distribution 
Approximation 

The pdf of a lognormal variate, 
𝑋𝑋, is given by: 

 
𝑃𝑃(𝑋𝑋𝜇𝜇,𝜎𝜎) =

1
𝑋𝑋𝜎𝜎√2𝜋𝜋 exp (−(ln(𝑋𝑋)−𝜇𝜇)2

2𝜎𝜎2 )            (3) 

where 𝜇𝜇  and 𝜎𝜎2  are the mean 
and the variance of ln(𝑋𝑋) , 
respectively. A property of a 
lognormal distribution is that its 
logarithm is a Gaussian 
distribution, that is 𝑌𝑌 = ln(𝑋𝑋) is 
a normal distribution with 
parameters 𝜇𝜇 and 𝜎𝜎2 denoted by 
𝑋𝑋 ∼ ln(𝜇𝜇, 𝜎𝜎2) . Note that the 
parameters 𝜇𝜇  and 𝜎𝜎2 are not 
equal to the mean and variance 
of the random variable 𝑋𝑋 . The 
latter are given by the following 
expressions: 
 

𝐸𝐸[𝑋𝑋] = exp (𝜇𝜇 + 𝜎𝜎2

2 )            (4) 

Var[𝑋𝑋] = 
exp(2𝜇𝜇 + 𝜎𝜎2) [exp(𝜎𝜎2 − 1)](5) 
 

Because the basic events in a 
fault tree are assumed to be 
independent of each other, the 
occurrence probability of a 
minimal cut set is the product of 
all the occurrence probabilities 
of the basic events included in 
the MCS, as follows: 

 
𝑌𝑌𝑖𝑖 = ∏ 𝑋𝑋𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖
𝑖𝑖=1              (6) 

 
where 𝑌𝑌𝑖𝑖 is the random variable 
for the occurrence probability of 
the 𝑖𝑖𝑡𝑡ℎ  MCS, 𝑋𝑋𝑖𝑖𝑖𝑖  is the random 
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variable, which have lognormal 
parameters {𝜇𝜇𝑋𝑋𝑋𝑋, 𝜎𝜎𝑋𝑋𝑋𝑋} , for the 
occurrence probability of 𝑗𝑗𝑡𝑡ℎ 
basic event included in the 
𝑖𝑖𝑡𝑡ℎ MCS, and 𝑛𝑛𝑋𝑋  is the number 
of basic events. Then 𝑌𝑌𝑋𝑋 also has 
a lognormal distribution because 
the product of log-normal 
random variables is given as 
another log-normal random 
variable: 𝑌𝑌𝑋𝑋 ∼
ln(∑ 𝜇𝜇𝑋𝑋𝑋𝑋

𝑚𝑚
𝑋𝑋=1 , ∑ 𝜎𝜎𝑋𝑋𝑋𝑋

2𝑚𝑚
𝑋𝑋=1 )  . As 

described in equation (2), the top 
event frequency of a single top 
fault tree in Level 1 PSA, can be 
approximated with the sum of a 
finite number of high-ranking 
lognormal random variables, as 
follows: 
   
𝑍𝑍 = ∑ 𝑌𝑌𝑋𝑋

𝑛𝑛
𝑋𝑋=1              (7) 

 
However, the lognormal 

random variables for minimal 
cut sets (𝑌𝑌𝑋𝑋 's) may be dependent 
to each other. Thus, some MCSs 
may include the same initiating 
event or basic events. Since 
high-ranking MCSs may depend 
on each other, the top event 
frequency is given as the sum of 
correlated lognormal random 
variables. The probability 
density function of the sum of 

correlated log normally 
distributed random variables is a 
well-known challenging 
problem. For instance, an 
analytical closed-form 
expression of the lognormal sum 
distribution does not exist and is 
still an open problem.  Ref. [7] 
gives an extension of the widely 
used iterative method known as 
Schwartz and Yeh (SY) method. 
Some other resources use an 
extended version of Fenton and 
Wilkinson methods [8]. In these 
methods, there is general 
agreement that a sum of 
lognormal distributions can be 
well approximated by another 
lognormal distribution. 
However, to find the parameters 
of the resultant lognormal 
distribution, different 
approaches have been proposed. 
Among these approaches are 
moments matching, cumulants 
matching, etc. The accuracy of 
each method relies highly on the 
region of the resulting 
distribution being examined, and 
the individual lognormal 
parameters. There is no such 
method which can provide the 
needed accuracy for all cases. 
For example, Schwartz and 
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Yeh's [7] method provide 
acceptable accuracy in low-
precision region of the 
Cumulative Distribution 
Function (CDF) and the FW 
method offers high accuracy in 
the high-value region of the 
CDF. Both methods break down 
for high values of standard 
deviations. 

 
IV. Proposed Lognormal 

Approximation Method  
The lognormal approximation, 

developed in this work, for the 
top event uncertainty estimation, 
uses first and second moments 
of the input parameters (mean 
and variance) to estimate the 
mean and variance of the output 
function. Recall that for a set of 
MCS, the probability of the 
output event is given by the 
random variable 𝑍𝑍  which is 
approximated by:  

 
𝑃𝑃(𝑍𝑍) = 𝑃𝑃(⋃ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 )                 (8) 

In theory, the calculation of 
the probability of a sum of MCS 
can be performed thanks to the 
Higher-order method via the 
inclusion–exclusion principle, 

also known as the Sylvester-
Poincaré development. 

𝑃𝑃(𝑍𝑍) = 𝑃𝑃 (⋃𝑀𝑀𝑀𝑀𝑀𝑀
𝑖𝑖

) = 

∑ 𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖)𝑛𝑛
𝑖𝑖=1 −

∑ 𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∩ 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗)𝑛𝑛
𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 +

⋯+ (−1)𝑛𝑛−1𝑃𝑃(⋂ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛
𝑖𝑖=1 ) (9) 

 
It can be seen from equation 

(9) that the quantification of 
higher-order terms results in a 
combinatorial expansion of 
conjunctive terms even with a 
small number of cut sets. The 
computational cost of this 
calculation method is 
prohibitive. Owing to both the 
complexity of the calculation 
and the large size of the resulting 
equations for the real models, 
approximations are thus 
performed by the so-called Rare 
Event Approximation (RAE) 
that consists in considering only 
the first term of the development. 
The REA approximation ignores 
the possibility that two or more 
rare events can occur 
simultaneously. That is, this 
approximation only considers 
the most relevant terms of the 
expansion up to a given order; 
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hence, the Sylvester-Poincaré 
development is often 
approximated up to the first 
order: 

 
𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅(𝑍𝑍) = ∑ 𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖)𝑛𝑛

𝑖𝑖=1    (10) 
 

Accordingly, the first and 
second-order moments are 
matched to the true distribution 
moments, by matching the mean 
value and the variance: 

 
𝐸𝐸[𝑍𝑍] =  ∑ 𝐸𝐸[𝑈𝑈𝑖𝑖]𝑛𝑛

𝑖𝑖=1                  (11) 
Var[𝑍𝑍] =  ∑ Var[𝑈𝑈𝑖𝑖]𝑛𝑛

𝑖𝑖=1        (12) 
 
Since we are forcing our 

approximate distribution for 𝑍𝑍 
to be log-normal, this results in 
the following expressions (from 
the properties of log-normal 
parameters): 

 

exp (𝜇𝜇𝑍𝑍 + 𝜎𝜎𝑍𝑍
2

2 ) = 

∑ exp (𝜇𝜇𝑖𝑖 + 𝜎𝜎𝑖𝑖
2

2 )𝑛𝑛
𝑖𝑖=1                  (13) 

exp(2𝜇𝜇𝑍𝑍 + 𝜎𝜎𝑍𝑍
2) exp(𝜎𝜎𝑍𝑍

2 − 1) =
∑ Var[𝑈𝑈𝑖𝑖]𝑛𝑛

𝑖𝑖=1                            (14) 
 

The mean value and variance 
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RAE is limited and normally 
conservative, based on not fully 
accounting for the dependence 
between MCSs. The amount of 
conservatism is generally 
unknown, and if the basic event 
probabilities get too large or the 
dependence among cut sets gets 
large, the REA overestimation 
can be quite noticeable. Since 
the REA tends to overestimate 
the top event probability, Min 
Cut Upper Bound (MCUB) 
approximation is introduced in 
this work to minimize or 
eliminate the high 
overestimation in the calculation. 
This takes advantage of the fact 
that is a better estimate of the 
mean of the top event 
probability than the rare event 
approximation (simple sum of 
MCSs). The Min Cut Upper 
Bound approximation is thus 
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accounting for the dependence 
between MCSs. The amount of 
conservatism is generally 
unknown, and if the basic event 
probabilities get too large or the 
dependence among cut sets gets 
large, the REA overestimation 
can be quite noticeable. Since 
the REA tends to overestimate 
the top event probability, Min 
Cut Upper Bound (MCUB) 
approximation is introduced in 
this work to minimize or 
eliminate the high 
overestimation in the calculation. 
This takes advantage of the fact 
that is a better estimate of the 
mean of the top event 
probability than the rare event 
approximation (simple sum of 
MCSs). The Min Cut Upper 
Bound approximation is thus 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

given by the following 
expression: 
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V. Application to a 

Benchmark Problem  
In this section, the accuracy of 
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highlighted through the example 
presented in Ref. [9], which is 

associated with the uncertainty 
analysis of a Level 1 PSA of a 
nuclear power plant (NPP) in the 
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shown in Figure 1 was 
constructed for the top event 
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Heat Removal due to a short-
term loss of offsite power, which 
is a small part of the full PSA 
model. Tables 1 and 2 present 
the relevant basic events and 
minimal cut sets parameters, 
respectively. As shown in Table 
2, RiskSpectrum software was 
used to derive the MCSs and 
their associated probabilities 
that quantitatively describe the 
illustrative example analyzed in 
the literature. A comparison of 
the proposed method with MC 
simulations and FW method was 
done, considering the resultant 
probability density function, 
cumulative distribution function, 
and percentiles. A Matlab code 
is developed to implement the 
analytic approach shown above 
and the procedure for obtaining 
the pdf or the cumulative 
distribution function for the 
event of interest.  
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unknown, and if the basic event 
probabilities get too large or the 
dependence among cut sets gets 
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the REA tends to overestimate 
the top event probability, Min 
Cut Upper Bound (MCUB) 
approximation is introduced in 
this work to minimize or 
eliminate the high 
overestimation in the calculation. 
This takes advantage of the fact 
that is a better estimate of the 
mean of the top event 
probability than the rare event 
approximation (simple sum of 
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RAE is limited and normally 
conservative, based on not fully 
accounting for the dependence 
between MCSs. The amount of 
conservatism is generally 
unknown, and if the basic event 
probabilities get too large or the 
dependence among cut sets gets 
large, the REA overestimation 
can be quite noticeable. Since 
the REA tends to overestimate 
the top event probability, Min 
Cut Upper Bound (MCUB) 
approximation is introduced in 
this work to minimize or 
eliminate the high 
overestimation in the calculation. 
This takes advantage of the fact 
that is a better estimate of the 
mean of the top event 
probability than the rare event 
approximation (simple sum of 
MCSs). The Min Cut Upper 
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given by the following 
expression: 

 
𝑃𝑃MCUB(𝑍𝑍) = 

1 − ∏(1 − 𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
=      

     1 − ∏ (1 − ∏ 𝑃𝑃(𝑋𝑋𝑗𝑗)𝑚𝑚
𝑗𝑗=1 )𝑛𝑛

𝑖𝑖=1   
(17) 

 
If, all the 𝑋𝑋𝑗𝑗 have a lognormal 

distribution, then using the 
results of equation (17), the 
distribution of 𝑍𝑍  can be 
approximated in closed form as 
a lognormal distribution. The 
original estimate of the sigma 
parameter in equation (15), of 
the assumed log-normal 
distribution via the Rare Event 
approximation is still used, since 
equation (17) cannot be used to 
derive a better estimate of the 
variance. These two estimates 
together define a unique 
lognormal approximation 
distribution. 

 
V. Application to a 

Benchmark Problem  
In this section, the accuracy of 

the proposed method is 
highlighted through the example 
presented in Ref. [9], which is 

associated with the uncertainty 
analysis of a Level 1 PSA of a 
nuclear power plant (NPP) in the 
United Kingdom. The fault tree 
shown in Figure 1 was 
constructed for the top event 
'Reactor Core Damage' caused 
by a failure of Core Residual 
Heat Removal due to a short-
term loss of offsite power, which 
is a small part of the full PSA 
model. Tables 1 and 2 present 
the relevant basic events and 
minimal cut sets parameters, 
respectively. As shown in Table 
2, RiskSpectrum software was 
used to derive the MCSs and 
their associated probabilities 
that quantitatively describe the 
illustrative example analyzed in 
the literature. A comparison of 
the proposed method with MC 
simulations and FW method was 
done, considering the resultant 
probability density function, 
cumulative distribution function, 
and percentiles. A Matlab code 
is developed to implement the 
analytic approach shown above 
and the procedure for obtaining 
the pdf or the cumulative 
distribution function for the 
event of interest.  
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Next, Monte Carlo simulations 
are performed with 100,000 
samples using RiskSpectrum 
software to estimate the top 
event uncertainty distribution. 
Figure 2 shows the probability 
density functions of the core 
damage frequency obtained 
using Monte Carlo simulations, 
Fenton-Wilkinson's method, and 
the proposed method. As can be 
seen in Figure 2, FW method 
shows a relatively high accuracy 
in the right tail of the probability 
distribution function, whereas 
the method shows poor accuracy 
in the left tail of the distribution. 
Indeed, Fenton - Wilkinson 
method relies on matching the 
first and second moments using 

REA approximation of the mean 
value. However, the proposed 
method based on MCUB 
approximation of the mean 
provides a theoretical 
probability density function 
which is in good agreement with 
the MC simulation and being 
slightly lower as can be shown in 
Figure 2. Table 3 presents a 
comparison of the percentiles 
estimated using the three 
methods. As can be seen in this 
table, the proposed method 
provides theoretically more 
accurate results since the median 
values of the approximation 
method show a good agreement 
with MC simulation. 

 
Table 1: Relevant Basic Events and Parameters (E(x) and σ^2 values were taken 

from Ref. [9]) 
Event Designation Parameters 

𝐸𝐸[𝑋𝑋] 𝜎𝜎2 
A Short-Term Loss of Offsite Power 6.00E-2 7.60E-2 
B CCF of Batteries for Short-Term Start of 

EDG 
6.60E-6 8.36E-6 

C Operator fails to Start the Backup DG by 
Local Action 

1.00E-2 1.27E-2 

D Operator fails to Start the Backup DG or 
Close Breakers 

2.13E-3 2.70E-3 

E CCF to Run Backup Diesels 8.33E-4 1.06E-3 
F CCF of Batteries Via Two-Hour Discharge 5.20E-5 6.59E-5 
G CCF to Start Emergency Diesel Generators 6.10E-5 7.73E-5 
H CCF to Run Emergency Diesel Generators 4.20E-5 5.32E-5 
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I Fail to Run Individual Backup DG 1.58E-3 2.00E-3 
J CCF to Start Backup Diesels 1.00E-4 1.27E-4 
K Damage to O-ring Seals 9.00E-2 1.14E-1 
L Severe Seal Damage on Reactor Cool. Pumps 1.00E-1 1.27E-1 
M CCF to Run High-Pressure Injection Pumps 1.20E-4 1.52E-4 

 

 
Figure 1: FT analysis for the Core Damage caused by the Core Residual Heat 

Removal Failure 
 

Table 2: Minimal Cut Sets probabilities for Reactor Core Damage frequency due to 
short-term loss of offsite power 
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This is also illustrated in 
Figure 3, where the cumulative 
distribution function obtained by 
lognormal approximation 
method is compared with results 
obtained by MC method used as 
a reference and the data from the 
mentioned literature using FW 
method. Figures 2 and 3 and the 
comparison of percentiles in 
Table 3, show that the proposed 
method gives reasonable overall 
results for this problem, and 
capture the broad shape of the 
top event distribution quite well. 
The use of MCUB 
approximation in uncertainty 
analysis with the analytic 
solution is expected to 
significantly reduce the 
computational burden in 
calculating the pdf's of top 
events in a fault trees with 
limited errors. However, for 
more complex systems and large 
fault and event trees, computer 
implementation of the described 
approach can be performed and 

examined in depth to understand 
the characteristics and 
limitations, if any. 

 

 
Figure 2: Top event pdf, via MC, FW 

and the Proposed method 
 

 
Figure 3: Top event CDF, via (i) MC 
sampling, (ii) FW method and (iii) 

Proposed Approximation 
 

 
Table 3: Comparison of core damage frequency obtained by proposed lognormal 

approximation with data from literature 
Method 5𝑡𝑡ℎ 

Percentile 
Median 95𝑡𝑡ℎ 

Percentile 
% difference 

of median 

1E-12 1E-11 1E-10 1E-09 1E-08 1E-07
0

1

2

3

4

5x1E-08
Probability Densty Function

 

 

Monte Carlo simulation
Fenton-Wilkinson's method
Proposed Lognormal Approximation

5E-09 1E-08 1.5E-08 2E-08 2.5E-08 3E-08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Core Damage Frequency 

Cumulative Distribution Function-Linear scale

 

 

Monte Carlo Simulation
Proposed Lognormal Approximation
Fenton Wilkinson Method

Journal of Engineering and Technology 

12 
ISSN: 2180-3811 Vol. XX No. X 

 

9 AHKLM 2.722E-12 0.05 
 

This is also illustrated in 
Figure 3, where the cumulative 
distribution function obtained by 
lognormal approximation 
method is compared with results 
obtained by MC method used as 
a reference and the data from the 
mentioned literature using FW 
method. Figures 2 and 3 and the 
comparison of percentiles in 
Table 3, show that the proposed 
method gives reasonable overall 
results for this problem, and 
capture the broad shape of the 
top event distribution quite well. 
The use of MCUB 
approximation in uncertainty 
analysis with the analytic 
solution is expected to 
significantly reduce the 
computational burden in 
calculating the pdf's of top 
events in a fault trees with 
limited errors. However, for 
more complex systems and large 
fault and event trees, computer 
implementation of the described 
approach can be performed and 

examined in depth to understand 
the characteristics and 
limitations, if any. 

 

 
Figure 2: Top event pdf, via MC, FW 

and the Proposed method 
 

 
Figure 3: Top event CDF, via (i) MC 
sampling, (ii) FW method and (iii) 

Proposed Approximation 
 

 
Table 3: Comparison of core damage frequency obtained by proposed lognormal 

approximation with data from literature 
Method 5𝑡𝑡ℎ 

Percentile 
Median 95𝑡𝑡ℎ 

Percentile 
% difference 

of median 

1E-12 1E-11 1E-10 1E-09 1E-08 1E-07
0

1

2

3

4

5x1E-08
Probability Densty Function

 

 

Monte Carlo simulation
Fenton-Wilkinson's method
Proposed Lognormal Approximation

5E-09 1E-08 1.5E-08 2E-08 2.5E-08 3E-08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Core Damage Frequency 

Cumulative Distribution Function-Linear scale

 

 

Monte Carlo Simulation
Proposed Lognormal Approximation
Fenton Wilkinson Method

Journal of Engineering and Technology 

12 
ISSN: 2180-3811 Vol. XX No. X 

 

9 AHKLM 2.722E-12 0.05 
 

This is also illustrated in 
Figure 3, where the cumulative 
distribution function obtained by 
lognormal approximation 
method is compared with results 
obtained by MC method used as 
a reference and the data from the 
mentioned literature using FW 
method. Figures 2 and 3 and the 
comparison of percentiles in 
Table 3, show that the proposed 
method gives reasonable overall 
results for this problem, and 
capture the broad shape of the 
top event distribution quite well. 
The use of MCUB 
approximation in uncertainty 
analysis with the analytic 
solution is expected to 
significantly reduce the 
computational burden in 
calculating the pdf's of top 
events in a fault trees with 
limited errors. However, for 
more complex systems and large 
fault and event trees, computer 
implementation of the described 
approach can be performed and 

examined in depth to understand 
the characteristics and 
limitations, if any. 

 

 
Figure 2: Top event pdf, via MC, FW 

and the Proposed method 
 

 
Figure 3: Top event CDF, via (i) MC 
sampling, (ii) FW method and (iii) 

Proposed Approximation 
 

 
Table 3: Comparison of core damage frequency obtained by proposed lognormal 

approximation with data from literature 
Method 5𝑡𝑡ℎ 

Percentile 
Median 95𝑡𝑡ℎ 

Percentile 
% difference 

of median 

1E-12 1E-11 1E-10 1E-09 1E-08 1E-07
0

1

2

3

4

5x1E-08
Probability Densty Function

 

 

Monte Carlo simulation
Fenton-Wilkinson's method
Proposed Lognormal Approximation

5E-09 1E-08 1.5E-08 2E-08 2.5E-08 3E-08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Core Damage Frequency 

Cumulative Distribution Function-Linear scale

 

 

Monte Carlo Simulation
Proposed Lognormal Approximation
Fenton Wilkinson Method



ISSN: 2180-3811         Vol. 14     No. 2    July - December 2023

Journal of Engineering and Technology 

228

Journal of Engineering and Technology 

12 
ISSN: 2180-3811 Vol. XX No. X 

 

9 AHKLM 2.722E-12 0.05 
 

This is also illustrated in 
Figure 3, where the cumulative 
distribution function obtained by 
lognormal approximation 
method is compared with results 
obtained by MC method used as 
a reference and the data from the 
mentioned literature using FW 
method. Figures 2 and 3 and the 
comparison of percentiles in 
Table 3, show that the proposed 
method gives reasonable overall 
results for this problem, and 
capture the broad shape of the 
top event distribution quite well. 
The use of MCUB 
approximation in uncertainty 
analysis with the analytic 
solution is expected to 
significantly reduce the 
computational burden in 
calculating the pdf's of top 
events in a fault trees with 
limited errors. However, for 
more complex systems and large 
fault and event trees, computer 
implementation of the described 
approach can be performed and 

examined in depth to understand 
the characteristics and 
limitations, if any. 

 

 
Figure 2: Top event pdf, via MC, FW 

and the Proposed method 
 

 
Figure 3: Top event CDF, via (i) MC 
sampling, (ii) FW method and (iii) 

Proposed Approximation 
 

 
Table 3: Comparison of core damage frequency obtained by proposed lognormal 

approximation with data from literature 
Method 5𝑡𝑡ℎ 

Percentile 
Median 95𝑡𝑡ℎ 

Percentile 
% difference 

of median 

1E-12 1E-11 1E-10 1E-09 1E-08 1E-07
0

1

2

3

4

5x1E-08
Probability Densty Function

 

 

Monte Carlo simulation
Fenton-Wilkinson's method
Proposed Lognormal Approximation

5E-09 1E-08 1.5E-08 2E-08 2.5E-08 3E-08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Core Damage Frequency 

Cumulative Distribution Function-Linear scale

 

 

Monte Carlo Simulation
Proposed Lognormal Approximation
Fenton Wilkinson Method

Journal of Engineering and Technology 

13 
ISSN: 2180-3811 Vol. XX No. X 

 

Proposed 
Approximation 

1.17 × 10−10 1.57 × 10−9 2.13 × 10−8 3.18% 

MC simulation 1.13 × 10−10 1.59 × 10−9 2.27 × 10−8 1.89% 
FW method 1.26 × 10−10 1.62 × 10−9 2.08 × 10−8 -- 

 
VI. Conclusion 

In this study, a lognormal 
approximation approach is 
proposed for analyzing the 
uncertainty in the top event 
frequency or probability in PSA 
when basic events are given with 
lognormal random variables. 
The effectiveness of the method 
developed in this work has been 
tested using a benchmark 
problem of a PSA part of a 
nuclear power plant. The value 
of the proposed log-normal 
approximation lies in reducing 
the excessive computational 
load involved in conventional 
Monte Carlo methods of 
uncertainty estimation and 
improving confidence in the 
values of important percentiles. 
An additional area in which the 
approximate method may be of 
value is in understanding of the 
contributions to the uncertainty 
distribution; mainly, in 
importance analysis and 
sensitivity studies related to 
basic events which require re-
estimating the uncertainty 

distribution several times (once 
for every input parameter) which 
is hardly achievable with Monte 
Carlo simulation. Furthermore, 
it is worth noting that decreasing 
of the conservatism that is 
caused by the REA 
approximation of the top event 
mean value allows an 
improvement of importance 
measures calculations and 
provides a more accurate 
overview of uncertainty 
contributors. In summary, the 
proposed method proves to be an 
efficient approach providing the 
probability density function of 
the top event frequency or 
probability with high accuracy. 
As a theoretical approach, the 
proposed method provides 
deeper insights into the 
uncertainty analysis. The 
mathematical formulation and 
analytic solutions provided in 
this study are expected to serve 
as a basis for future studies on 
theoretical approaches for the 
uncertainty analysis in PSA. 
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Proposed 
Approximation 
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MC simulation 1.13 × 10−10 1.59 × 10−9 2.27 × 10−8 1.89% 
FW method 1.26 × 10−10 1.62 × 10−9 2.08 × 10−8 -- 

 
VI. Conclusion 

In this study, a lognormal 
approximation approach is 
proposed for analyzing the 
uncertainty in the top event 
frequency or probability in PSA 
when basic events are given with 
lognormal random variables. 
The effectiveness of the method 
developed in this work has been 
tested using a benchmark 
problem of a PSA part of a 
nuclear power plant. The value 
of the proposed log-normal 
approximation lies in reducing 
the excessive computational 
load involved in conventional 
Monte Carlo methods of 
uncertainty estimation and 
improving confidence in the 
values of important percentiles. 
An additional area in which the 
approximate method may be of 
value is in understanding of the 
contributions to the uncertainty 
distribution; mainly, in 
importance analysis and 
sensitivity studies related to 
basic events which require re-
estimating the uncertainty 

distribution several times (once 
for every input parameter) which 
is hardly achievable with Monte 
Carlo simulation. Furthermore, 
it is worth noting that decreasing 
of the conservatism that is 
caused by the REA 
approximation of the top event 
mean value allows an 
improvement of importance 
measures calculations and 
provides a more accurate 
overview of uncertainty 
contributors. In summary, the 
proposed method proves to be an 
efficient approach providing the 
probability density function of 
the top event frequency or 
probability with high accuracy. 
As a theoretical approach, the 
proposed method provides 
deeper insights into the 
uncertainty analysis. The 
mathematical formulation and 
analytic solutions provided in 
this study are expected to serve 
as a basis for future studies on 
theoretical approaches for the 
uncertainty analysis in PSA. 
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value is in understanding of the 
contributions to the uncertainty 
distribution; mainly, in 
importance analysis and 
sensitivity studies related to 
basic events which require re-
estimating the uncertainty 

distribution several times (once 
for every input parameter) which 
is hardly achievable with Monte 
Carlo simulation. Furthermore, 
it is worth noting that decreasing 
of the conservatism that is 
caused by the REA 
approximation of the top event 
mean value allows an 
improvement of importance 
measures calculations and 
provides a more accurate 
overview of uncertainty 
contributors. In summary, the 
proposed method proves to be an 
efficient approach providing the 
probability density function of 
the top event frequency or 
probability with high accuracy. 
As a theoretical approach, the 
proposed method provides 
deeper insights into the 
uncertainty analysis. The 
mathematical formulation and 
analytic solutions provided in 
this study are expected to serve 
as a basis for future studies on 
theoretical approaches for the 
uncertainty analysis in PSA. 
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