
ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Development of a Library Navigation System Using Dijkstra’s Algorithm

189

1
This is an open-access journal that the content is freely available without charge to the user or
corresponding institution licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

ISSN: 2180-3811 Vol. XX No. X

DEVELOPMENT OF A LIBRARY NAVIGATION
SYSTEM USING DIJKSTRA’S ALGORITHM

A. A. M. Salleh1 and K. Abdulrahim*1
1 Department of Electronic/Electrical Engineering, Faculty of Engineering

and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai,
Malaysia.

*corresponding: khairiabdulrahim@usim.edu.my

Article history:
Received Date:
27 March 2023
Revised Date:
10 June 2023
Accepted Date:
21 June 2023

Keywords:
Navigation
System, Library,
Dijkstra’s
Algorithm,
Simulation,
Android Studio

Abstract— The aim of this article is to
explore the potential of indoor navigation
systems for library users, an area that has
not been fully explored in previous research.
The design of library buildings, which
typically feature multiple floors and
hundreds of book racks, poses a challenge
for users to locate specific books or articles.
As traditional navigation signals such as
Global Positioning System signals have
been found to be unreliable for indoor
navigation, this article proposes a navigation
system using the shortest distance
algorithm to assist library users. To test the
proposed system, we implemented the
Dijkstra algorithm in a navigation software
prototype using the real USIM library layout

ISSN 2180-3811 eISSN 2289-814X https://jet.utem.edu.my/jet/index

Journal of Engineering and Technology

1
This is an open-access journal that the content is freely available without charge to the user or
corresponding institution licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

ISSN: 2180-3811 Vol. XX No. X

DEVELOPMENT OF A LIBRARY NAVIGATION
SYSTEM USING DIJKSTRA’S ALGORITHM

A. A. M. Salleh1 and K. Abdulrahim*1
1 Department of Electronic/Electrical Engineering, Faculty of Engineering

and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai,
Malaysia.

*corresponding: khairiabdulrahim@usim.edu.my

Article history:
Received Date:
27 March 2023
Revised Date:
10 June 2023
Accepted Date:
21 June 2023

Keywords:
Navigation
System, Library,
Dijkstra’s
Algorithm,
Simulation,
Android Studio

Abstract— The aim of this article is to
explore the potential of indoor navigation
systems for library users, an area that has
not been fully explored in previous research.
The design of library buildings, which
typically feature multiple floors and
hundreds of book racks, poses a challenge
for users to locate specific books or articles.
As traditional navigation signals such as
Global Positioning System signals have
been found to be unreliable for indoor
navigation, this article proposes a navigation
system using the shortest distance
algorithm to assist library users. To test the
proposed system, we implemented the
Dijkstra algorithm in a navigation software
prototype using the real USIM library layout

ISSN 2180-3811 eISSN 2289-814X https://jet.utem.edu.my/jet/index

Journal of Engineering and Technology

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Journal of Engineering and Technology

190

Journal of Engineering and Technology

2
ISSN: 2180-3811 Vol. XX No. X

as a case study. The algorithm was able to
assist users in navigating the library even
with obstacles, by providing the shortest
path from a given starting point to a desired
destination. The results of this study
demonstrate the potential for indoor
navigation systems in libraries and highlight
the effectiveness of the Dijkstra algorithm in
providing accurate and efficient route
planning for users. This research provides a
foundation for future studies exploring the
application of navigation systems in other
indoor environments and the development
of more sophisticated algorithms to further
improve navigation accuracy and efficiency.

I. Introduction

Localization techniques such
as Wi-Fi [1], Bluetooth [2],
RFID [3], and computer vision
[4] are commonly used for
positioning users within libraries.
However, each technique has
limitations, including signal
interference, accuracy issues,
and high implementation costs.
Mapping and floorplan
generation techniques, such as
SLAM [5], are crucial for
creating accurate representations
of library spaces. However,
challenges arise due to the
dynamic nature of libraries,
making real-time mapping and

updating a complex task. Route
planning algorithms, such as
Dijkstra's algorithm [6] or RRT
(Rapidly exploring Random
Trees) [7], help users navigate
through libraries efficiently.
Nonetheless, these algorithms
may struggle [8] with
considering dynamic obstacles,
multi-floor navigation, and
providing personalized routes.
This becomes the key focus of
the work in this article. User
interfaces, such as graphical, AR,
and voice-based interfaces, aim
to enhance user experience, but
they may have limitations in
terms of usability, accessibility,

Journal of Engineering and Technology

3
ISSN: 2180-3811 Vol. XX No. X

and user acceptance. Integrating
emerging technologies like
Internet of Things, IoT [9],
beacons, and Artificial
Intelligence, AI [10] can bring
innovative solutions to library
navigation, but challenges such
as interoperability, scalability,
and privacy concerns must be
addressed.

The majority of the world's
libraries are multi-floor and
quite large, presenting a
significant challenge for
unfamiliar visitors such as new
students or foreign patrons. For
example, the Bodleian Library at
the University of Oxford [11]
has eleven floors with various
blocks, making navigation a
daunting task. Similarly, the
Thomas Fisher Rare Book
Library [12] at the University of
Toronto, while medium-sized,
can still take days or even weeks
to navigate due to its vast
collection of books. As a result,
library patrons spend more time
looking for books, while
strangers have even more
difficulty finding them. To
address this issue, route
planning can be used to help

navigate these complex library
systems.

This article revisits the
development of a library
navigation system that uses
Dijkstra's algorithm to provide
the shortest and fastest route to
the desired destination, while
also allowing for adjustments to
be made in response to dynamic
barriers, such as moving book
racks. The article also describes
the validation of the algorithm
through various scenarios and
obstacles, as well as the
implementation and
performance of the algorithm in
a prototype navigation system.

The article is structured as
follows: the materials and
methodologies used are outlined,
including the system's flow
architecture, prototype
development, and simulation
testing. The results and
discussion are then presented,
followed by a conclusion and
discussion of future work.

II. Material and

Methodology
A. The system’s architecture

and interface concept

Journal of Engineering and Technology

2
ISSN: 2180-3811 Vol. XX No. X

as a case study. The algorithm was able to
assist users in navigating the library even
with obstacles, by providing the shortest
path from a given starting point to a desired
destination. The results of this study
demonstrate the potential for indoor
navigation systems in libraries and highlight
the effectiveness of the Dijkstra algorithm in
providing accurate and efficient route
planning for users. This research provides a
foundation for future studies exploring the
application of navigation systems in other
indoor environments and the development
of more sophisticated algorithms to further
improve navigation accuracy and efficiency.

I. Introduction

Localization techniques such
as Wi-Fi [1], Bluetooth [2],
RFID [3], and computer vision
[4] are commonly used for
positioning users within libraries.
However, each technique has
limitations, including signal
interference, accuracy issues,
and high implementation costs.
Mapping and floorplan
generation techniques, such as
SLAM [5], are crucial for
creating accurate representations
of library spaces. However,
challenges arise due to the
dynamic nature of libraries,
making real-time mapping and

updating a complex task. Route
planning algorithms, such as
Dijkstra's algorithm [6] or RRT
(Rapidly exploring Random
Trees) [7], help users navigate
through libraries efficiently.
Nonetheless, these algorithms
may struggle [8] with
considering dynamic obstacles,
multi-floor navigation, and
providing personalized routes.
This becomes the key focus of
the work in this article. User
interfaces, such as graphical, AR,
and voice-based interfaces, aim
to enhance user experience, but
they may have limitations in
terms of usability, accessibility,

Journal of Engineering and Technology

2
ISSN: 2180-3811 Vol. XX No. X

as a case study. The algorithm was able to
assist users in navigating the library even
with obstacles, by providing the shortest
path from a given starting point to a desired
destination. The results of this study
demonstrate the potential for indoor
navigation systems in libraries and highlight
the effectiveness of the Dijkstra algorithm in
providing accurate and efficient route
planning for users. This research provides a
foundation for future studies exploring the
application of navigation systems in other
indoor environments and the development
of more sophisticated algorithms to further
improve navigation accuracy and efficiency.

I. Introduction

Localization techniques such
as Wi-Fi [1], Bluetooth [2],
RFID [3], and computer vision
[4] are commonly used for
positioning users within libraries.
However, each technique has
limitations, including signal
interference, accuracy issues,
and high implementation costs.
Mapping and floorplan
generation techniques, such as
SLAM [5], are crucial for
creating accurate representations
of library spaces. However,
challenges arise due to the
dynamic nature of libraries,
making real-time mapping and

updating a complex task. Route
planning algorithms, such as
Dijkstra's algorithm [6] or RRT
(Rapidly exploring Random
Trees) [7], help users navigate
through libraries efficiently.
Nonetheless, these algorithms
may struggle [8] with
considering dynamic obstacles,
multi-floor navigation, and
providing personalized routes.
This becomes the key focus of
the work in this article. User
interfaces, such as graphical, AR,
and voice-based interfaces, aim
to enhance user experience, but
they may have limitations in
terms of usability, accessibility,

Journal of Engineering and Technology

2
ISSN: 2180-3811 Vol. XX No. X

as a case study. The algorithm was able to
assist users in navigating the library even
with obstacles, by providing the shortest
path from a given starting point to a desired
destination. The results of this study
demonstrate the potential for indoor
navigation systems in libraries and highlight
the effectiveness of the Dijkstra algorithm in
providing accurate and efficient route
planning for users. This research provides a
foundation for future studies exploring the
application of navigation systems in other
indoor environments and the development
of more sophisticated algorithms to further
improve navigation accuracy and efficiency.

I. Introduction

Localization techniques such
as Wi-Fi [1], Bluetooth [2],
RFID [3], and computer vision
[4] are commonly used for
positioning users within libraries.
However, each technique has
limitations, including signal
interference, accuracy issues,
and high implementation costs.
Mapping and floorplan
generation techniques, such as
SLAM [5], are crucial for
creating accurate representations
of library spaces. However,
challenges arise due to the
dynamic nature of libraries,
making real-time mapping and

updating a complex task. Route
planning algorithms, such as
Dijkstra's algorithm [6] or RRT
(Rapidly exploring Random
Trees) [7], help users navigate
through libraries efficiently.
Nonetheless, these algorithms
may struggle [8] with
considering dynamic obstacles,
multi-floor navigation, and
providing personalized routes.
This becomes the key focus of
the work in this article. User
interfaces, such as graphical, AR,
and voice-based interfaces, aim
to enhance user experience, but
they may have limitations in
terms of usability, accessibility,

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Development of a Library Navigation System Using Dijkstra’s Algorithm

191

Journal of Engineering and Technology

3
ISSN: 2180-3811 Vol. XX No. X

and user acceptance. Integrating
emerging technologies like
Internet of Things, IoT [9],
beacons, and Artificial
Intelligence, AI [10] can bring
innovative solutions to library
navigation, but challenges such
as interoperability, scalability,
and privacy concerns must be
addressed.

The majority of the world's
libraries are multi-floor and
quite large, presenting a
significant challenge for
unfamiliar visitors such as new
students or foreign patrons. For
example, the Bodleian Library at
the University of Oxford [11]
has eleven floors with various
blocks, making navigation a
daunting task. Similarly, the
Thomas Fisher Rare Book
Library [12] at the University of
Toronto, while medium-sized,
can still take days or even weeks
to navigate due to its vast
collection of books. As a result,
library patrons spend more time
looking for books, while
strangers have even more
difficulty finding them. To
address this issue, route
planning can be used to help

navigate these complex library
systems.

This article revisits the
development of a library
navigation system that uses
Dijkstra's algorithm to provide
the shortest and fastest route to
the desired destination, while
also allowing for adjustments to
be made in response to dynamic
barriers, such as moving book
racks. The article also describes
the validation of the algorithm
through various scenarios and
obstacles, as well as the
implementation and
performance of the algorithm in
a prototype navigation system.

The article is structured as
follows: the materials and
methodologies used are outlined,
including the system's flow
architecture, prototype
development, and simulation
testing. The results and
discussion are then presented,
followed by a conclusion and
discussion of future work.

II. Material and

Methodology
A. The system’s architecture

and interface concept

Journal of Engineering and Technology

3
ISSN: 2180-3811 Vol. XX No. X

and user acceptance. Integrating
emerging technologies like
Internet of Things, IoT [9],
beacons, and Artificial
Intelligence, AI [10] can bring
innovative solutions to library
navigation, but challenges such
as interoperability, scalability,
and privacy concerns must be
addressed.

The majority of the world's
libraries are multi-floor and
quite large, presenting a
significant challenge for
unfamiliar visitors such as new
students or foreign patrons. For
example, the Bodleian Library at
the University of Oxford [11]
has eleven floors with various
blocks, making navigation a
daunting task. Similarly, the
Thomas Fisher Rare Book
Library [12] at the University of
Toronto, while medium-sized,
can still take days or even weeks
to navigate due to its vast
collection of books. As a result,
library patrons spend more time
looking for books, while
strangers have even more
difficulty finding them. To
address this issue, route
planning can be used to help

navigate these complex library
systems.

This article revisits the
development of a library
navigation system that uses
Dijkstra's algorithm to provide
the shortest and fastest route to
the desired destination, while
also allowing for adjustments to
be made in response to dynamic
barriers, such as moving book
racks. The article also describes
the validation of the algorithm
through various scenarios and
obstacles, as well as the
implementation and
performance of the algorithm in
a prototype navigation system.

The article is structured as
follows: the materials and
methodologies used are outlined,
including the system's flow
architecture, prototype
development, and simulation
testing. The results and
discussion are then presented,
followed by a conclusion and
discussion of future work.

II. Material and

Methodology
A. The system’s architecture

and interface concept
Journal of Engineering and Technology

3
ISSN: 2180-3811 Vol. XX No. X

and user acceptance. Integrating
emerging technologies like
Internet of Things, IoT [9],
beacons, and Artificial
Intelligence, AI [10] can bring
innovative solutions to library
navigation, but challenges such
as interoperability, scalability,
and privacy concerns must be
addressed.

The majority of the world's
libraries are multi-floor and
quite large, presenting a
significant challenge for
unfamiliar visitors such as new
students or foreign patrons. For
example, the Bodleian Library at
the University of Oxford [11]
has eleven floors with various
blocks, making navigation a
daunting task. Similarly, the
Thomas Fisher Rare Book
Library [12] at the University of
Toronto, while medium-sized,
can still take days or even weeks
to navigate due to its vast
collection of books. As a result,
library patrons spend more time
looking for books, while
strangers have even more
difficulty finding them. To
address this issue, route
planning can be used to help

navigate these complex library
systems.

This article revisits the
development of a library
navigation system that uses
Dijkstra's algorithm to provide
the shortest and fastest route to
the desired destination, while
also allowing for adjustments to
be made in response to dynamic
barriers, such as moving book
racks. The article also describes
the validation of the algorithm
through various scenarios and
obstacles, as well as the
implementation and
performance of the algorithm in
a prototype navigation system.

The article is structured as
follows: the materials and
methodologies used are outlined,
including the system's flow
architecture, prototype
development, and simulation
testing. The results and
discussion are then presented,
followed by a conclusion and
discussion of future work.

II. Material and

Methodology
A. The system’s architecture

and interface concept

Journal of Engineering and Technology

4
ISSN: 2180-3811 Vol. XX No. X

In this proposed library
navigation system, the system
architecture consists of two core
roles: user and administrator.
Figure 1 shows how the system
flow architecture works.

Figure 1: System Flow Architecture

A library navigation system is

designed to provide a
streamlined experience for
library users, allowing them to
easily find books and articles
within the library. Both the user
and administrator roles in this
system have similar features for
registration and login, but also
have unique features tailored to
their specific needs.
Administrators can manage
customer service to provide a
better experience for users,
while users have access to
customer service benefits such
as problem reporting and
helpdesk support. Additionally,

users can use tools such as
account management and
bookmark management to better
organize their navigation
experience.

The flowchart for this library
navigation system illustrates that
the major component of the
software has its own database,
integrated with MySQL system
software. The system provides a
range of functionality for both
user and administrator roles,
with a focus on efficient
navigation within the library. As
the system continues to evolve,
it will need to work with the
MySQL software database,
connecting to the library book
database and location. This will
enable the system to better
organize and separate the two
roles, providing an even more
streamlined and effective
navigation experience. Figure 2
below shows the flowchart for
the library navigation system.

Once the system setup is
complete, the navigation system
interface is established as
follows: The prototype system's
interface is the simplest, with
only a distance indicator, origin
and destination indicators, and a

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Journal of Engineering and Technology

192

Journal of Engineering and Technology

4
ISSN: 2180-3811 Vol. XX No. X

In this proposed library
navigation system, the system
architecture consists of two core
roles: user and administrator.
Figure 1 shows how the system
flow architecture works.

Figure 1: System Flow Architecture

A library navigation system is

designed to provide a
streamlined experience for
library users, allowing them to
easily find books and articles
within the library. Both the user
and administrator roles in this
system have similar features for
registration and login, but also
have unique features tailored to
their specific needs.
Administrators can manage
customer service to provide a
better experience for users,
while users have access to
customer service benefits such
as problem reporting and
helpdesk support. Additionally,

users can use tools such as
account management and
bookmark management to better
organize their navigation
experience.

The flowchart for this library
navigation system illustrates that
the major component of the
software has its own database,
integrated with MySQL system
software. The system provides a
range of functionality for both
user and administrator roles,
with a focus on efficient
navigation within the library. As
the system continues to evolve,
it will need to work with the
MySQL software database,
connecting to the library book
database and location. This will
enable the system to better
organize and separate the two
roles, providing an even more
streamlined and effective
navigation experience. Figure 2
below shows the flowchart for
the library navigation system.

Once the system setup is
complete, the navigation system
interface is established as
follows: The prototype system's
interface is the simplest, with
only a distance indicator, origin
and destination indicators, and a

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. XX No. X

search bar for the specified
location. An example is shown
in Figure 3.

Figure 2: System Flow Architecture's

Flowchart

Figure 3: Interface Concept

The Android Studio software

[13] was utilized to create the
user interface for the library
navigation system. Users can
easily search for their desired
location using the search panel

provided in the interface. To
integrate map layouts into the
system, .png files are used
instead of a full code algorithm.
The map layout used in this
work was created using the
MATLAB software, where
obstacles such as bookshelves,
tables and chairs, walls, and
columns are encoded as blank
spaces that cannot be accessed
by the algorithm. The map
layout model used for
simulations in the MATLAB
software was the main area of
the Universiti Sains Islam
Malaysia (USIM) library on the
first floor. Figure 4 showcases
the map layout model that was
developed for the purpose of
simulations running in the
MATLAB software.

Figure 4: Map Layout Model for the

Simulation System

Journal of Engineering and Technology

4
ISSN: 2180-3811 Vol. XX No. X

In this proposed library
navigation system, the system
architecture consists of two core
roles: user and administrator.
Figure 1 shows how the system
flow architecture works.

Figure 1: System Flow Architecture

A library navigation system is

designed to provide a
streamlined experience for
library users, allowing them to
easily find books and articles
within the library. Both the user
and administrator roles in this
system have similar features for
registration and login, but also
have unique features tailored to
their specific needs.
Administrators can manage
customer service to provide a
better experience for users,
while users have access to
customer service benefits such
as problem reporting and
helpdesk support. Additionally,

users can use tools such as
account management and
bookmark management to better
organize their navigation
experience.

The flowchart for this library
navigation system illustrates that
the major component of the
software has its own database,
integrated with MySQL system
software. The system provides a
range of functionality for both
user and administrator roles,
with a focus on efficient
navigation within the library. As
the system continues to evolve,
it will need to work with the
MySQL software database,
connecting to the library book
database and location. This will
enable the system to better
organize and separate the two
roles, providing an even more
streamlined and effective
navigation experience. Figure 2
below shows the flowchart for
the library navigation system.

Once the system setup is
complete, the navigation system
interface is established as
follows: The prototype system's
interface is the simplest, with
only a distance indicator, origin
and destination indicators, and a

Journal of Engineering and Technology

4
ISSN: 2180-3811 Vol. XX No. X

In this proposed library
navigation system, the system
architecture consists of two core
roles: user and administrator.
Figure 1 shows how the system
flow architecture works.

Figure 1: System Flow Architecture

A library navigation system is

designed to provide a
streamlined experience for
library users, allowing them to
easily find books and articles
within the library. Both the user
and administrator roles in this
system have similar features for
registration and login, but also
have unique features tailored to
their specific needs.
Administrators can manage
customer service to provide a
better experience for users,
while users have access to
customer service benefits such
as problem reporting and
helpdesk support. Additionally,

users can use tools such as
account management and
bookmark management to better
organize their navigation
experience.

The flowchart for this library
navigation system illustrates that
the major component of the
software has its own database,
integrated with MySQL system
software. The system provides a
range of functionality for both
user and administrator roles,
with a focus on efficient
navigation within the library. As
the system continues to evolve,
it will need to work with the
MySQL software database,
connecting to the library book
database and location. This will
enable the system to better
organize and separate the two
roles, providing an even more
streamlined and effective
navigation experience. Figure 2
below shows the flowchart for
the library navigation system.

Once the system setup is
complete, the navigation system
interface is established as
follows: The prototype system's
interface is the simplest, with
only a distance indicator, origin
and destination indicators, and a

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Development of a Library Navigation System Using Dijkstra’s Algorithm

193

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. XX No. X

search bar for the specified
location. An example is shown
in Figure 3.

Figure 2: System Flow Architecture's

Flowchart

Figure 3: Interface Concept

The Android Studio software

[13] was utilized to create the
user interface for the library
navigation system. Users can
easily search for their desired
location using the search panel

provided in the interface. To
integrate map layouts into the
system, .png files are used
instead of a full code algorithm.
The map layout used in this
work was created using the
MATLAB software, where
obstacles such as bookshelves,
tables and chairs, walls, and
columns are encoded as blank
spaces that cannot be accessed
by the algorithm. The map
layout model used for
simulations in the MATLAB
software was the main area of
the Universiti Sains Islam
Malaysia (USIM) library on the
first floor. Figure 4 showcases
the map layout model that was
developed for the purpose of
simulations running in the
MATLAB software.

Figure 4: Map Layout Model for the

Simulation System

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. XX No. X

search bar for the specified
location. An example is shown
in Figure 3.

Figure 2: System Flow Architecture's

Flowchart

Figure 3: Interface Concept

The Android Studio software

[13] was utilized to create the
user interface for the library
navigation system. Users can
easily search for their desired
location using the search panel

provided in the interface. To
integrate map layouts into the
system, .png files are used
instead of a full code algorithm.
The map layout used in this
work was created using the
MATLAB software, where
obstacles such as bookshelves,
tables and chairs, walls, and
columns are encoded as blank
spaces that cannot be accessed
by the algorithm. The map
layout model used for
simulations in the MATLAB
software was the main area of
the Universiti Sains Islam
Malaysia (USIM) library on the
first floor. Figure 4 showcases
the map layout model that was
developed for the purpose of
simulations running in the
MATLAB software.

Figure 4: Map Layout Model for the

Simulation System

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. XX No. X

search bar for the specified
location. An example is shown
in Figure 3.

Figure 2: System Flow Architecture's

Flowchart

Figure 3: Interface Concept

The Android Studio software

[13] was utilized to create the
user interface for the library
navigation system. Users can
easily search for their desired
location using the search panel

provided in the interface. To
integrate map layouts into the
system, .png files are used
instead of a full code algorithm.
The map layout used in this
work was created using the
MATLAB software, where
obstacles such as bookshelves,
tables and chairs, walls, and
columns are encoded as blank
spaces that cannot be accessed
by the algorithm. The map
layout model used for
simulations in the MATLAB
software was the main area of
the Universiti Sains Islam
Malaysia (USIM) library on the
first floor. Figure 4 showcases
the map layout model that was
developed for the purpose of
simulations running in the
MATLAB software.

Figure 4: Map Layout Model for the

Simulation System

Journal of Engineering and Technology

6
ISSN: 2180-3811 Vol. XX No. X

In the MATLAB simulation
software, the map layout
displays several key elements to
aid in navigation. The user's
starting point, or source, is
represented by a vivid green box,
while the intended destination is
marked with a bright yellow box.
The region that the algorithm is
calculating is shown in red,
while the area computed by the
Dijkstra algorithm is highlighted
in a subdued gray. Obstacles in
the area, such as bookshelves,
tables, chairs, walls, and
columns, are indicated by black
boxes. All of these components
are integrated into the MATLAB
software, providing an intuitive
and user-friendly interface for
simulation purposes.

B. Implementation of

Dijkstra’s Algorithm
To utilize Dijkstra's algorithm,

one must possess a fundamental
comprehension of its operational
procedures. The algorithm has
had widespread use in
applications such as packet
switching software for computer
communications [14]. While the
original Dijkstra algorithm was
employed to identify the shortest

route between two nodes, a more
general form involves the
selection of a single node to
serve as the "source" node. This
allows for the computation of
paths between the source node
and all other nodes within the
network, resulting in the
construction of a shortest-path
tree. To understand how it works,
the basic algorithmic model of
the temporal algorithm is shown
in Equation (1) below:

𝑂𝑂((|𝐸𝐸|+ |𝑉𝑉|) log|𝑉𝑉|) (1)

where:
𝑂𝑂 = Time Algorithm
𝐸𝐸 = Edges
𝑉𝑉 = Vertices

The execution time bound for
Dijkstra's algorithm on a graph
with edges E and vertices V is
given as a function of the
number of edges represented by
|𝐸𝐸|. The number of vertices
represented by |𝑉𝑉| uses Big-O
notation. The data structure used
to represent the set Q largely
determines the bounds on
complexity. Since |𝐸𝐸|, the upper
limit can be set as follows: It is

Journal of Engineering and Technology

5
ISSN: 2180-3811 Vol. XX No. X

search bar for the specified
location. An example is shown
in Figure 3.

Figure 2: System Flow Architecture's

Flowchart

Figure 3: Interface Concept

The Android Studio software

[13] was utilized to create the
user interface for the library
navigation system. Users can
easily search for their desired
location using the search panel

provided in the interface. To
integrate map layouts into the
system, .png files are used
instead of a full code algorithm.
The map layout used in this
work was created using the
MATLAB software, where
obstacles such as bookshelves,
tables and chairs, walls, and
columns are encoded as blank
spaces that cannot be accessed
by the algorithm. The map
layout model used for
simulations in the MATLAB
software was the main area of
the Universiti Sains Islam
Malaysia (USIM) library on the
first floor. Figure 4 showcases
the map layout model that was
developed for the purpose of
simulations running in the
MATLAB software.

Figure 4: Map Layout Model for the

Simulation System

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Journal of Engineering and Technology

194

Journal of Engineering and Technology

6
ISSN: 2180-3811 Vol. XX No. X

In the MATLAB simulation
software, the map layout
displays several key elements to
aid in navigation. The user's
starting point, or source, is
represented by a vivid green box,
while the intended destination is
marked with a bright yellow box.
The region that the algorithm is
calculating is shown in red,
while the area computed by the
Dijkstra algorithm is highlighted
in a subdued gray. Obstacles in
the area, such as bookshelves,
tables, chairs, walls, and
columns, are indicated by black
boxes. All of these components
are integrated into the MATLAB
software, providing an intuitive
and user-friendly interface for
simulation purposes.

B. Implementation of

Dijkstra’s Algorithm
To utilize Dijkstra's algorithm,

one must possess a fundamental
comprehension of its operational
procedures. The algorithm has
had widespread use in
applications such as packet
switching software for computer
communications [14]. While the
original Dijkstra algorithm was
employed to identify the shortest

route between two nodes, a more
general form involves the
selection of a single node to
serve as the "source" node. This
allows for the computation of
paths between the source node
and all other nodes within the
network, resulting in the
construction of a shortest-path
tree. To understand how it works,
the basic algorithmic model of
the temporal algorithm is shown
in Equation (1) below:

𝑂𝑂((|𝐸𝐸|+ |𝑉𝑉|) log|𝑉𝑉|) (1)

where:
𝑂𝑂 = Time Algorithm
𝐸𝐸 = Edges
𝑉𝑉 = Vertices

The execution time bound for
Dijkstra's algorithm on a graph
with edges E and vertices V is
given as a function of the
number of edges represented by
|𝐸𝐸|. The number of vertices
represented by |𝑉𝑉| uses Big-O
notation. The data structure used
to represent the set Q largely
determines the bounds on
complexity. Since |𝐸𝐸|, the upper
limit can be set as follows: It is

Journal of Engineering and Technology

7
ISSN: 2180-3811 Vol. XX No. X

𝑂𝑂(〖\|V|〗^2) in each graph that
is tightened, but this relaxation
ignores the possibility that
different upper bounds on |𝐸𝐸|
apply to some problems.
The code used consists of
Dijkstra’s algorithm with
calculations integrated in
MATLAB. The 'j' in the code
represents the number of
columns and the 'i' represents the
number of rows. Then we use the
distanceFromStart function
written in the time direction to
calculate the probabilities from
the source to the destination for

each step. We assume a constant
user step and is equivalent to
each iteration. One pixel of map
is equivalent to one step of a user
taken. Although this is a very
simplified approach, it is
consistent with the main goal of
the navigation system, which is
to find the shortest route to the
destination. From there, the
algorithm then completes the
location that tracks the shortest
distance based on how long it
takes to get there. An example of
code used to simulate Dijkstra's
algorithm is shown in Figure 5.

Figure 5: An example of Dijkstra's Algorithm's code used

Journal of Engineering and Technology

6
ISSN: 2180-3811 Vol. XX No. X

In the MATLAB simulation
software, the map layout
displays several key elements to
aid in navigation. The user's
starting point, or source, is
represented by a vivid green box,
while the intended destination is
marked with a bright yellow box.
The region that the algorithm is
calculating is shown in red,
while the area computed by the
Dijkstra algorithm is highlighted
in a subdued gray. Obstacles in
the area, such as bookshelves,
tables, chairs, walls, and
columns, are indicated by black
boxes. All of these components
are integrated into the MATLAB
software, providing an intuitive
and user-friendly interface for
simulation purposes.

B. Implementation of

Dijkstra’s Algorithm
To utilize Dijkstra's algorithm,

one must possess a fundamental
comprehension of its operational
procedures. The algorithm has
had widespread use in
applications such as packet
switching software for computer
communications [14]. While the
original Dijkstra algorithm was
employed to identify the shortest

route between two nodes, a more
general form involves the
selection of a single node to
serve as the "source" node. This
allows for the computation of
paths between the source node
and all other nodes within the
network, resulting in the
construction of a shortest-path
tree. To understand how it works,
the basic algorithmic model of
the temporal algorithm is shown
in Equation (1) below:

𝑂𝑂((|𝐸𝐸|+ |𝑉𝑉|) log|𝑉𝑉|) (1)

where:
𝑂𝑂 = Time Algorithm
𝐸𝐸 = Edges
𝑉𝑉 = Vertices

The execution time bound for
Dijkstra's algorithm on a graph
with edges E and vertices V is
given as a function of the
number of edges represented by
|𝐸𝐸|. The number of vertices
represented by |𝑉𝑉| uses Big-O
notation. The data structure used
to represent the set Q largely
determines the bounds on
complexity. Since |𝐸𝐸|, the upper
limit can be set as follows: It is

Journal of Engineering and Technology

6
ISSN: 2180-3811 Vol. XX No. X

In the MATLAB simulation
software, the map layout
displays several key elements to
aid in navigation. The user's
starting point, or source, is
represented by a vivid green box,
while the intended destination is
marked with a bright yellow box.
The region that the algorithm is
calculating is shown in red,
while the area computed by the
Dijkstra algorithm is highlighted
in a subdued gray. Obstacles in
the area, such as bookshelves,
tables, chairs, walls, and
columns, are indicated by black
boxes. All of these components
are integrated into the MATLAB
software, providing an intuitive
and user-friendly interface for
simulation purposes.

B. Implementation of

Dijkstra’s Algorithm
To utilize Dijkstra's algorithm,

one must possess a fundamental
comprehension of its operational
procedures. The algorithm has
had widespread use in
applications such as packet
switching software for computer
communications [14]. While the
original Dijkstra algorithm was
employed to identify the shortest

route between two nodes, a more
general form involves the
selection of a single node to
serve as the "source" node. This
allows for the computation of
paths between the source node
and all other nodes within the
network, resulting in the
construction of a shortest-path
tree. To understand how it works,
the basic algorithmic model of
the temporal algorithm is shown
in Equation (1) below:

𝑂𝑂((|𝐸𝐸|+ |𝑉𝑉|) log|𝑉𝑉|) (1)

where:
𝑂𝑂 = Time Algorithm
𝐸𝐸 = Edges
𝑉𝑉 = Vertices

The execution time bound for
Dijkstra's algorithm on a graph
with edges E and vertices V is
given as a function of the
number of edges represented by
|𝐸𝐸|. The number of vertices
represented by |𝑉𝑉| uses Big-O
notation. The data structure used
to represent the set Q largely
determines the bounds on
complexity. Since |𝐸𝐸|, the upper
limit can be set as follows: It is

Journal of Engineering and Technology

6
ISSN: 2180-3811 Vol. XX No. X

In the MATLAB simulation
software, the map layout
displays several key elements to
aid in navigation. The user's
starting point, or source, is
represented by a vivid green box,
while the intended destination is
marked with a bright yellow box.
The region that the algorithm is
calculating is shown in red,
while the area computed by the
Dijkstra algorithm is highlighted
in a subdued gray. Obstacles in
the area, such as bookshelves,
tables, chairs, walls, and
columns, are indicated by black
boxes. All of these components
are integrated into the MATLAB
software, providing an intuitive
and user-friendly interface for
simulation purposes.

B. Implementation of

Dijkstra’s Algorithm
To utilize Dijkstra's algorithm,

one must possess a fundamental
comprehension of its operational
procedures. The algorithm has
had widespread use in
applications such as packet
switching software for computer
communications [14]. While the
original Dijkstra algorithm was
employed to identify the shortest

route between two nodes, a more
general form involves the
selection of a single node to
serve as the "source" node. This
allows for the computation of
paths between the source node
and all other nodes within the
network, resulting in the
construction of a shortest-path
tree. To understand how it works,
the basic algorithmic model of
the temporal algorithm is shown
in Equation (1) below:

𝑂𝑂((|𝐸𝐸|+ |𝑉𝑉|) log|𝑉𝑉|) (1)

where:
𝑂𝑂 = Time Algorithm
𝐸𝐸 = Edges
𝑉𝑉 = Vertices

The execution time bound for
Dijkstra's algorithm on a graph
with edges E and vertices V is
given as a function of the
number of edges represented by
|𝐸𝐸|. The number of vertices
represented by |𝑉𝑉| uses Big-O
notation. The data structure used
to represent the set Q largely
determines the bounds on
complexity. Since |𝐸𝐸|, the upper
limit can be set as follows: It is

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Development of a Library Navigation System Using Dijkstra’s Algorithm

195

Journal of Engineering and Technology

7
ISSN: 2180-3811 Vol. XX No. X

𝑂𝑂(〖\|V|〗^2) in each graph that
is tightened, but this relaxation
ignores the possibility that
different upper bounds on |𝐸𝐸|
apply to some problems.
The code used consists of
Dijkstra’s algorithm with
calculations integrated in
MATLAB. The 'j' in the code
represents the number of
columns and the 'i' represents the
number of rows. Then we use the
distanceFromStart function
written in the time direction to
calculate the probabilities from
the source to the destination for

each step. We assume a constant
user step and is equivalent to
each iteration. One pixel of map
is equivalent to one step of a user
taken. Although this is a very
simplified approach, it is
consistent with the main goal of
the navigation system, which is
to find the shortest route to the
destination. From there, the
algorithm then completes the
location that tracks the shortest
distance based on how long it
takes to get there. An example of
code used to simulate Dijkstra's
algorithm is shown in Figure 5.

Figure 5: An example of Dijkstra's Algorithm's code used

Journal of Engineering and Technology

7
ISSN: 2180-3811 Vol. XX No. X

𝑂𝑂(〖\|V|〗^2) in each graph that
is tightened, but this relaxation
ignores the possibility that
different upper bounds on |𝐸𝐸|
apply to some problems.
The code used consists of
Dijkstra’s algorithm with
calculations integrated in
MATLAB. The 'j' in the code
represents the number of
columns and the 'i' represents the
number of rows. Then we use the
distanceFromStart function
written in the time direction to
calculate the probabilities from
the source to the destination for

each step. We assume a constant
user step and is equivalent to
each iteration. One pixel of map
is equivalent to one step of a user
taken. Although this is a very
simplified approach, it is
consistent with the main goal of
the navigation system, which is
to find the shortest route to the
destination. From there, the
algorithm then completes the
location that tracks the shortest
distance based on how long it
takes to get there. An example of
code used to simulate Dijkstra's
algorithm is shown in Figure 5.

Figure 5: An example of Dijkstra's Algorithm's code used

Journal of Engineering and Technology

7
ISSN: 2180-3811 Vol. XX No. X

𝑂𝑂(〖\|V|〗^2) in each graph that
is tightened, but this relaxation
ignores the possibility that
different upper bounds on |𝐸𝐸|
apply to some problems.
The code used consists of
Dijkstra’s algorithm with
calculations integrated in
MATLAB. The 'j' in the code
represents the number of
columns and the 'i' represents the
number of rows. Then we use the
distanceFromStart function
written in the time direction to
calculate the probabilities from
the source to the destination for

each step. We assume a constant
user step and is equivalent to
each iteration. One pixel of map
is equivalent to one step of a user
taken. Although this is a very
simplified approach, it is
consistent with the main goal of
the navigation system, which is
to find the shortest route to the
destination. From there, the
algorithm then completes the
location that tracks the shortest
distance based on how long it
takes to get there. An example of
code used to simulate Dijkstra's
algorithm is shown in Figure 5.

Figure 5: An example of Dijkstra's Algorithm's code used

Journal of Engineering and Technology

7
ISSN: 2180-3811 Vol. XX No. X

𝑂𝑂(〖\|V|〗^2) in each graph that
is tightened, but this relaxation
ignores the possibility that
different upper bounds on |𝐸𝐸|
apply to some problems.
The code used consists of
Dijkstra’s algorithm with
calculations integrated in
MATLAB. The 'j' in the code
represents the number of
columns and the 'i' represents the
number of rows. Then we use the
distanceFromStart function
written in the time direction to
calculate the probabilities from
the source to the destination for

each step. We assume a constant
user step and is equivalent to
each iteration. One pixel of map
is equivalent to one step of a user
taken. Although this is a very
simplified approach, it is
consistent with the main goal of
the navigation system, which is
to find the shortest route to the
destination. From there, the
algorithm then completes the
location that tracks the shortest
distance based on how long it
takes to get there. An example of
code used to simulate Dijkstra's
algorithm is shown in Figure 5.

Figure 5: An example of Dijkstra's Algorithm's code used

Journal of Engineering and Technology

7
ISSN: 2180-3811 Vol. XX No. X

𝑂𝑂(〖\|V|〗^2) in each graph that
is tightened, but this relaxation
ignores the possibility that
different upper bounds on |𝐸𝐸|
apply to some problems.
The code used consists of
Dijkstra’s algorithm with
calculations integrated in
MATLAB. The 'j' in the code
represents the number of
columns and the 'i' represents the
number of rows. Then we use the
distanceFromStart function
written in the time direction to
calculate the probabilities from
the source to the destination for

each step. We assume a constant
user step and is equivalent to
each iteration. One pixel of map
is equivalent to one step of a user
taken. Although this is a very
simplified approach, it is
consistent with the main goal of
the navigation system, which is
to find the shortest route to the
destination. From there, the
algorithm then completes the
location that tracks the shortest
distance based on how long it
takes to get there. An example of
code used to simulate Dijkstra's
algorithm is shown in Figure 5.

Figure 5: An example of Dijkstra's Algorithm's code used

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Journal of Engineering and Technology

196

Journal of Engineering and Technology

8
ISSN: 2180-3811 Vol. XX No. X

Incorporating the code
effectively into the prototype
system requires rigorous testing
of its functionality. This
includes comprehending the
functional prerequisites,
recognizing the test inputs,
evaluating the expected
outcomes, and executing the test
code. A proven methodology for
carrying out these processes is
Agile software development,
which is widely adopted by
software developers and
organizations. However,
elaborating on this approach is
beyond the purview of this
article.

III. Results and Discussion

The software development
environment, Android Studio,
was utilized to design the
Android app. To test the
performance of the algorithm
and analyze its potential benefits
and drawbacks, various
scenarios were employed in
MATLAB. Dijkstra's study
emphasizes two main aspects:
interface design and system flow
architecture. The Android
Studio was employed to develop
the interface concept, while the

board layout was simulated
using MATLAB software. The
subsequent step involved
thorough testing to put the
algorithms through their paces.

A. Through Multiple

Obstacles
The testing of algorithms

involves a range of simulation
scenarios to gain a thorough
understanding of their
operations. This can be a
complex process, encompassing
both basic tests and more
intricate simulations.

Figure 6 illustrates a scenario
in which the algorithm
calculates a route without
obstacles. From this information,
the shortest distance to reach our
destination would be via the
right path.

Figure 6: Simulation Without Obstacle

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Development of a Library Navigation System Using Dijkstra’s Algorithm

197

Journal of Engineering and Technology

9
ISSN: 2180-3811 Vol. XX No. X

From Figure 7, the algorithm

attempted to avoid the obstacle
in the column closest to the goal.
This was due to a code snippet
where 'j' column appears first,
which caused the program logic
to calculate and proceed from
this column instead of moving
towards the right as expected.

Figure 7: Simulation Through

Obstacle

From Figure 8, the algorithm
has decided which path to take
based on its current location and
surroundings. This situation
indicates that the algorithm is
trying to move towards a goal in
a direct parallel manner;
however, because both paths
have equal distance (hence +1),
it instead chose to go left, despite
this being less desirable. In other
words, due to how the code was

written, map (i, j-1) comes
before map (i, j+1), indicating
that the algorithm prefers going
left (which is the negative
region), rather than to the right
(which is positive region).

Figure 8: Simulation Through
Multiple Obstacle Situation 1

Figure 9: Simulation Through
Multiple Obstacle Situation 2

This particular scenario

depicted in Figure 9 is merely an
illustration of the obstacles that

Journal of Engineering and Technology

9
ISSN: 2180-3811 Vol. XX No. X

From Figure 7, the algorithm

attempted to avoid the obstacle
in the column closest to the goal.
This was due to a code snippet
where 'j' column appears first,
which caused the program logic
to calculate and proceed from
this column instead of moving
towards the right as expected.

Figure 7: Simulation Through

Obstacle

From Figure 8, the algorithm
has decided which path to take
based on its current location and
surroundings. This situation
indicates that the algorithm is
trying to move towards a goal in
a direct parallel manner;
however, because both paths
have equal distance (hence +1),
it instead chose to go left, despite
this being less desirable. In other
words, due to how the code was

written, map (i, j-1) comes
before map (i, j+1), indicating
that the algorithm prefers going
left (which is the negative
region), rather than to the right
(which is positive region).

Figure 8: Simulation Through
Multiple Obstacle Situation 1

Figure 9: Simulation Through
Multiple Obstacle Situation 2

This particular scenario

depicted in Figure 9 is merely an
illustration of the obstacles that

Journal of Engineering and Technology

9
ISSN: 2180-3811 Vol. XX No. X

From Figure 7, the algorithm

attempted to avoid the obstacle
in the column closest to the goal.
This was due to a code snippet
where 'j' column appears first,
which caused the program logic
to calculate and proceed from
this column instead of moving
towards the right as expected.

Figure 7: Simulation Through

Obstacle

From Figure 8, the algorithm
has decided which path to take
based on its current location and
surroundings. This situation
indicates that the algorithm is
trying to move towards a goal in
a direct parallel manner;
however, because both paths
have equal distance (hence +1),
it instead chose to go left, despite
this being less desirable. In other
words, due to how the code was

written, map (i, j-1) comes
before map (i, j+1), indicating
that the algorithm prefers going
left (which is the negative
region), rather than to the right
(which is positive region).

Figure 8: Simulation Through
Multiple Obstacle Situation 1

Figure 9: Simulation Through
Multiple Obstacle Situation 2

This particular scenario

depicted in Figure 9 is merely an
illustration of the obstacles that

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Journal of Engineering and Technology

198

Journal of Engineering and Technology

10
ISSN: 2180-3811 Vol. XX No. X

the algorithm encounters when
combining the aforementioned
methods. In this case, the
algorithm aims to navigate from
the bottom-left to the top-right,
but it chooses the upward
direction instead of the
rightward direction, which is the
more optimal path. This is due to
the way the encoding was
programmed.

B. Through Different

Scenario
The presented Figure 10

depicts different scenarios in
which the algorithm is expected
to navigate through multiple
obstacles and floors to reach the
intended goal. Unfortunately,
MATLAB was unable to
integrate various map layouts,
leading to a challenge in
accurately simulating the
algorithm's behavior. To
overcome this limitation, a
proposed solution involving the
use of a stairway between floors
1 and 2 is shown in the obstacle
diagram. This idea aims to
eliminate the multi-floor
complexity and facilitate the
algorithm's navigation through
the area.

Figure 10: Simulation Through

Different Scenario

IV. Conclusion
This article delves into the

utilization of Dijkstra's
algorithm for the development
of a library navigation system.
The simulation conducted
exposes certain limitations of the
algorithm, including its inability
to calculate non-shortest
diagonal paths and the challenge
of combining multiple layouts
for comprehensive testing.
Despite these limitations, the
algorithm showcases
satisfactory results in basic
simulations.

In conclusion, the simulation
effectively demonstrates that,
given a well-designed floor plan,
Dijkstra's algorithm can
accurately predict shortest

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Development of a Library Navigation System Using Dijkstra’s Algorithm

199

Journal of Engineering and Technology

11
ISSN: 2180-3811 Vol. XX No. X

routes and address navigation
challenges within a library.
Although the algorithm has its
limitations, it proves to be a
simple, efficient, and accurate
solution for short-range travel,
particularly within library
settings. Overall, the simulation
serves as a valuable tool for
testing the performance of
Dijkstra's algorithm and lays the
foundation for the development
of a functional library navigation
system prototype.

V. Acknowledgement

The research leading to this
paper was partly supported by
Universiti Sains Islam Malaysia
through research code:
PPPI/FKAB/0121/USIM/17321.

VI. References
[1] Rizk, H., Yamaguchi, H., Youssef,

M., & Higashino, T. (2023). Laser
range scanners for enabling zero-
overhead wifi-based indoor
localization system. ACM
Transactions on Spatial
Algorithms and Systems, 9(1), 1-
25.

[2] Szyc, K., Nikodem, M., &
Zdunek, M. (2023). Bluetooth low
energy indoor localization for
large industrial areas and limited
infrastructure. Ad Hoc Networks,

139, 103024.
[3] Bi, S., Wang, C., Shen, J., Xiang,

W., Ni, W., Wang, X., ... & Gong,
Y. (2023). A Novel RFID
Localization Approach to Smart
Self-Service Borrowing and
Returning System. CMES-
COMPUTER MODELING IN
ENGINEERING & SCIENCES,
135(1), 527-538.

[4] Roy, A. M., Bhaduri, J., Kumar,
T., & Raj, K. (2023). WilDect-
YOLO: An efficient and robust
computer vision-based accurate
object localization model for
automated endangered wildlife
detection. Ecological Informatics,
75, 101919.

[5] Shao, S. (2023). A Monocular
SLAM System Based on the ORB
Features. In 2023 IEEE 3rd
International Conference on
Power, Electronics and Computer
Applications (ICPECA) (pp.
1221-1231). IEEE.

[6] Dharmasiri, P., Kavalchuk, I., &
Akbari, M. (2020). Novel
implementation of multiple
automated ground vehicles traffic
real time control algorithm for
warehouse operations: djikstra
approach. Operations and Supply
Chain Management: An
International Journal, 13(4), 396-
405.

[7] Karaman, S., Walter, M. R., Perez,
A., Frazzoli, E., & Teller, S.
(2011, May). Anytime motion
planning using the RRT. In 2011
IEEE international conference on
robotics and automation (pp.

ISSN: 2180-3811 Vol. 14 No. 2 July - December 2023

Journal of Engineering and Technology

200

Journal of Engineering and Technology

12
ISSN: 2180-3811 Vol. XX No. X

1478-1483). IEEE.
[8] Alqahtani, E. J., Alshamrani, F.

H., Syed, H. F., & Alhaidari, F. A.
(2018, April). Survey on
algorithms and techniques for
indoor navigation systems. In
2018 21st Saudi Computer Society
National Computer Conference
(NCC) (pp. 1-9). IEEE.

[9] Madakam, S., Lake, V., Lake, V.,
& Lake, V. (2015). Internet of
Things (IoT): A literature review.
Journal of Computer and
Communications, 3(05), 164.

[10] El-Sheimy, N., & Li, Y. (2021).
Indoor navigation: State of the art
and future trends. Satellite
Navigation, 2(1), 1-23.

[11] Raw, B. C. (1984). The
construction of Oxford, Bodleian
Library, Junius II. Anglo-Saxon
England, 13, 187-207.

[12] Whyte, J. (2017, June).
Preservation planning and
workflows for digital holdings at
the Thomas Fisher Rare Book
Library. In 2017 ACM/IEEE Joint
Conference on Digital Libraries
(JCDL) (pp. 1-0). IEEE.

[13] Van Drongelen, M. (2015).
Android studio cookbook. Packt
Publishing Ltd.

[14] Ya-qiong, Z., & Yun-rui, L.
(2016). A routing protocol for
wireless sensor networks using K-
means and Dijkstra algorithm.
International Journal of Advanced
Media and Communication, 6(2-
4), 109-121.

Journal of Engineering and Technology

12
ISSN: 2180-3811 Vol. XX No. X

1478-1483). IEEE.
[8] Alqahtani, E. J., Alshamrani, F.

H., Syed, H. F., & Alhaidari, F. A.
(2018, April). Survey on
algorithms and techniques for
indoor navigation systems. In
2018 21st Saudi Computer Society
National Computer Conference
(NCC) (pp. 1-9). IEEE.

[9] Madakam, S., Lake, V., Lake, V.,
& Lake, V. (2015). Internet of
Things (IoT): A literature review.
Journal of Computer and
Communications, 3(05), 164.

[10] El-Sheimy, N., & Li, Y. (2021).
Indoor navigation: State of the art
and future trends. Satellite
Navigation, 2(1), 1-23.

[11] Raw, B. C. (1984). The
construction of Oxford, Bodleian
Library, Junius II. Anglo-Saxon
England, 13, 187-207.

[12] Whyte, J. (2017, June).
Preservation planning and
workflows for digital holdings at
the Thomas Fisher Rare Book
Library. In 2017 ACM/IEEE Joint
Conference on Digital Libraries
(JCDL) (pp. 1-0). IEEE.

[13] Van Drongelen, M. (2015).
Android studio cookbook. Packt
Publishing Ltd.

[14] Ya-qiong, Z., & Yun-rui, L.
(2016). A routing protocol for
wireless sensor networks using K-
means and Dijkstra algorithm.
International Journal of Advanced
Media and Communication, 6(2-
4), 109-121.

