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Abstract— This paper describes a 
derivation of a design matrix for a foot-
mounted inertial pedestrian navigation. The 
design matrix sometimes known as state 
space propagation matrix, or transition 
matrix, that propagate the modelled states 
over time. An inertial sensor is assumed to 
be strapped tightly on the foot of a 
pedestrian, and therefore the 
measurements obtained are assumed to be 
highly correlated with the movement of a 
foot. This permit the use of velocity update 
whenever the foot is on the ground. The 
design matrix is then derived using the 
Invariant Extended Kalman Filter (IEKF) 
framework. The navigation state is 
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represented as an element of the matrix Lie 
group of double direct isometries, which is a 
mathematical description of the space in 
which the pedestrian moves, including 
position, velocity, and attitude. The model 
also incorporates accelerometers and rate-
gyros biases, which are common in inertial 
sensors. A comparison with the design 
matrix derived from the standard Extended 
Kalman Filter (EKF) are made, and will be 
shown unvarying with attitude estimates, 
which is an improvement over the standard 
EKF.   

 
I. Introduction 

The Extended Kalman Filter 
(EKF) is a widely used 
mathematical tool for estimating 
key variables and correcting 
errors [1]. For an inertial 
pedestrian navigation, the EKF 
typically involves a 15-state 
model, organized in a 3-by-3 
matrix, encompassing position, 
velocity, orientation, 
accelerometer bias, and 
gyroscope bias. This model is 
used to predict how these states 
change over time. 

When a new measurement is 
received from an external sensor, 
it updates the estimated states. 
The error-based EKF approach 
compares the predicted states 

with the latest sensor 
measurement to calculate the 
error. By giving weight to this 
error, it's used to adjust the 
predicted states, thereby refining 
or updating them. This loop of 
prediction and correction based 
on new measurements makes the 
EKF a powerful estimation tool. 

The design matrix is a 
mathematical framework that 
outlines how states change over 
time within the context of state 
estimation using the Extended 
Kalman Filter (EKF), also 
known as the Multiplicative 
Extended Kalman Filter 
(MEKF). In the EKF, the state 
vector is continuously predicted 
and updated based on data from 
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external sensors. The design 
matrix plays a critical role in 
modeling the relationship 
between the state vector and the 
sensor measurements, allowing 
the state vector to be projected 
forward in time. 

Typically, the design matrix is 
derived from the underlying 
physical model of the system 
being estimated. For example, in 
inertial navigation, the design 
matrix establishes the 
relationship between 
acceleration, velocity, and 
position states, illustrating how 
they evolve over time. It also 
incorporates terms to represent 
sensor biases and other sources 
of error. 

Recent studies in [2], [3], and 
[4] introduced a new method for 
state estimation on Lie groups 
using the Invariant Extended 
Kalman Filter (IEKF). The Lie 
group framework allows 
modeling a system's state that 
evolves on a nonlinear manifold, 
offering a broader scope than the 
traditional Kalman filtering 
approach, which typically uses 
Euclidean space. Lie groups [10] 
are mathematical constructs that 
capture a system's symmetry 

properties. Essentially, a Lie 
group is a collection of 
transformations that can be 
smoothly parameterized and that 
also form a differentiable 
manifold. In other words, it's a 
group with a smooth structure. 
When a system is invariant 
under a Lie group's 
transformations, it means the 
system's characteristics remain 
consistent when these 
transformations are applied. The 
IEKF is a state estimation 
algorithm that operates on Lie 
groups. It is a nonlinear filter 
that can handle a wide range of 
nonlinear and non-Gaussian 
systems, making it well-suited 
for many real-world applications, 
including inertial pedestrian 
navigation [5]. 

In this article, the Invariant 
Extended Kalman Filter (IEKF) 
algorithm is applied to a foot-
mounted inertial pedestrian 
navigation system. The 
navigation state is represented as 
an element of the matrix Lie 
group of double direct 
isometries, 𝑆𝐸ଶ(3) , which 
describes the space 
encompassing position, velocity, 
and attitude in which the 
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pedestrian operates. This model 
also includes biases from 
accelerometers and rate gyros, 
common components in inertial 
sensors. The design matrix for 
the navigation system is 
developed and discussed. It 
demonstrates how the stationary 
phase during a pedestrian's walk 
can be incorporated into the 
matrix as part of the external 
measurements used to update the 
system. This phase, often 
referred to as Zero Velocity 
Update [6], is shown to be a left-
invariant measurement within 
the IEKF framework. 
 
II. Methodology 
A. System Modelling 

Let point 𝑧  be the centre of 
mass of a rigid body rotating and 
translating in 3D space. Let ℱ௡ 
be a, North-East-Down (NED) 
navigation reference frame and 
ℱ௕  be the body frame. Point 𝑤 
is a reference point in the inertial 
frame that is not moving. The 
position of 𝑧  relative to 𝑤 , 
resolved in the navigation frame 
is denoted 𝐫௡

௭௪. 
The velocity of the body with 

respect to  ℱ௡ , resolved in ℱ௡  is 

denoted 𝐯௡
௭௪/௡ . The attitude of 

the body is described by DCM 
𝑪௡௕. The angular velocity of the 
body, with respect to inertial 
frame, a, resolved in ℱ௕  is 

denoted 𝛚௕
௕௔. The kinematics of 

the body are then given by 
Equation (1) to (3). 

𝐂̇௡௕ =  𝐂௡௕𝛚௕
௕௔×

                          (1) 

𝐯̇௡
௭ఠ/௡

= 𝐚௡
௭ఠ/௡/௡                         (2) 

𝐫̇௡
௭ఠ/௡

= 𝐯௡
௭ఠ/௡/௡                         (3) 

 
B. Continuous Time Process 

Model 
Rate-gyro measurements that 

are biased and noisy, 𝐮𝒃
𝟏  , and 

accelerometer measurements 

that are biased and noisy, 𝐮𝒃
𝟐 are 

given by Equation (4) and (5), 
respectively. 

𝐮௕
ଵ = 𝛚௕

௕௔−𝐛௕
ଵ − 𝐰௕

ଵ                 (4) 

𝐮௕
ଶ = 𝐟𝒃−𝐛௕

ଶ − 𝐰௕
ଶ                      (5) 

 
where noise 𝐰௕

ଵ~𝒩(𝟎, 𝑸ଵ)  and 
noise 𝐰௕

ଶ~𝒩(𝟎, 𝑸ଶ) . The bias 

𝐛௕
ଵ  is modelled as a random walk 

as shown in Equation (6). 

𝐛̇௕
ଵ = 𝐰௕

ଷ                                          (6) 
 

where noise 𝐰௕
ଷ~𝒩(𝟎, 𝑸ଷ) and 

𝐟𝒃  is the specific force vector 
resolved in the body frame. The 

accelerometer bias 𝐛௕
ଶ is also 
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modelled as a random walk as in 
Equation (7). 

𝐛̇௕
ଶ = 𝐰௕

ସ                                          (7) 
 
where noise 𝐰௕

ସ~𝒩(𝟎, 𝑸ସ) . 
The acceleration can then be ex- 
pressed as in Equation (8). 

𝐯̇௡

୸୵
௡ = 𝐟௡ + 𝐠௡ = 𝐂௡௕𝐟௡ + 𝐠௡ 

= 𝐂௡௕(𝐮௕
ଶ + 𝐛௕

ଶ + 𝐰௕
ଶ) + 𝐠௡ (8) 

 
where 𝐠௡ is the gravity vector 
resolved in the navigation frame. 
Thus, the continuous-time 
kinematic process model is 
given as Equation (9) to (11). 

𝐂̇௡௕ = 𝐂௡௕(𝐮௕
ଵ + 𝐛௕

ଵ + 𝐰௕
ଵ)×(9) 

𝐯̇௡
୸୵/௡

= 𝐂௡௕(𝐮௕
ଶ + 𝐛௕

ଶ + 𝐰௕
ଶ) +

𝐠௡                                                      (10) 

𝐫̇௡
୸୵/௡

= 𝐯௡
୸୵/୬                           (11) 

 
The process model can be 

discretized using any 
appropriate discretization 
scheme. In this case, using a 
Forward Euler discretization 
yields as in Equation (12) to (16). 
𝐂௡௕ೖ

= 𝐂௡௕ೖିଵexp(𝑇(𝐮௕ೖషభ

ଵ +

𝐛௕ೖషభ

ଵ + 𝐰௕ೖషభ

ଵ )×)                     (12) 

𝐯௡
୸ೖ୵

= 𝐯௡
୸ೖషభ୵

+

𝑇(𝐂௡௕ೖషభ
(𝐮௕ೖషభ

ଶ + 𝐛௕ೖషభ

ଶ +

𝐰௕ೖషభ

ଶ ) + 𝐠௡)                              (13) 

𝐫௡
୸ೖ୵

= 𝐫௡
୸ೖషభ୵

+ 𝑇𝐯௡
௭ೖషభ୵/୬   (14)           

𝐛௕ೖ

ଵ = 𝐛௕ೖషభ

ଵ + 𝑇𝐰௕ೖషభ

ଷ           (15) 

𝐛௕ೖ

ଶ = 𝐛௕ೖషభ

ଶ + 𝑇𝐰௕ೖషభ

ସ           (16) 

 
where 𝑇 = 𝑡௞ − 𝑡௞ିଵ  is the 
timestep. 

Next, the pedestrian navigation 

states 𝐂௡௕ , 𝐯௡
୸୵/୬ , 𝐫௡

௭௪ , 𝐛௕
ଵ  and 

𝐛௕
ଶ can be placed into an element 

of the Lie group 𝑆𝐸ଶ(3)  with 
biases as in Equation (17). 
𝐓𝟏 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐂௡௕ 𝐯𝒏 𝐫𝒏

⬚ 1 ⬚
⬚ ⬚ 1

⬚ ⬚ ⬚
⬚ ⬚ ⬚
⬚ ⬚ ⬚

⬚ ⬚ ⬚
⬚ ⬚ ⬚
⬚ ⬚ ⬚

1 𝐛ୠ
ଵ ⬚

⬚ 1 𝐛ୠ
ଶ

⬚ ⬚ 1 ⎦
⎥
⎥
⎥
⎥
⎤

(17) 

 
C. Measurement Model 

Zero Velocity Update: The 
available measurements are only 
from accelerometers and gyros 
that provide noisy acceleration 
and angular rates measurements 
respectively. First, the velocity 
measurement is inferred through 
a velocity sensor (detector), 
specifically when the foot is 
detected to be in stance phase, 
that the position of the foot is 
assumed to remain fixed in the 
navigation N-E-D frame, and 
therefore the measured pseudo-
velocity is zero, as shown in 



Journal of Engineering and Technology 

6 
ISSN: 2180-3811 Vol. XX No. X 

 

Figure 1. This is known as Zero 
Velocity Update (ZVU or 
ZUPT), and many variations of 
ZUPT have been experimented 
in navigation system [7], [8], [9]. 
 

 
Figure 1: The red dots are detected for 

stance phase, where velocity is 
assumed to be zero 

 

Velocity pseudo-measurement 
is given by Equation (18), where 
𝐯௡ೖ

ଵ ~𝒩(𝟎, 𝑹ଵ). 

𝒚௡ೖ
ଵ = 𝟎ଷ×ଵ = 𝐯௡

୸ೖ୵/୬
+ 𝐯௡ೖ

ଵ    (18) 

 
These measurements can be 

written as a function of the 

navigation states contained 
within 𝐓 as Equation (19). 

቎
𝒚௡ೖ

ଵ

⬚
⬚

቏ = ቎
𝐯௡

୸ೖ୵/୬

⬚
⬚

቏ + ቎
𝐯௡ೖ

ଵ

⬚
⬚

቏ =

൦𝐓௞ ൥
𝟎
1
0

൩ + ቎
𝐯௡ೖ

ଵ

⬚
⬚

቏൪                       (19) 

 
where the measurement model 

for velocity is 𝒚௞
୐ = 𝐗௞𝐛௞ + 𝐯௞. 

Therefore, the measurement 
model for the velocity sensor is 
in left-invariant form. 
 
D. IEKF Continuous-Time 

Prediction 
Because the measurement 

model for the velocity sensor is 
left-invariant, a left-invariant 
error definition will be used. 
Thus, the left invariant error for 
the lie group 𝒢ଵ  is given as 
Equation (20). 

 

𝛿𝐗 = 𝐗ିଵ 𝐗෡ = ൦

𝐓ି𝟏 𝟎 ⬚ ⬚
⬚ 𝟏 −𝐛௕

ଵ  −𝐛௕
ଶ

⬚ ⬚ 1 ⬚
⬚ ⬚ ⬚ 1

൪ ൦

𝐓෡ 𝟎 ⬚ ⬚
⬚ 𝟏 𝐛መ ௕

ଵ  𝐛መ ௕
ଶ

⬚ ⬚ 1 ⬚
⬚ ⬚ ⬚ 1

൪ =

൦

𝐓ି𝟏𝐓෡ 𝟎 ⬚ ⬚
⬚ 1 𝐛መ ௕

ଵ − 𝐛௕
ଵ  𝐛መ ௕

ଶ − 𝐛௕
ଶ

⬚ ⬚ 1 ⬚
⬚ ⬚ ⬚ 1

൪                                                                (20) 
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Thus, the left-invariant errors 
can be written as Equation (21) 
to (23). 

𝛿𝐓 =  𝐓ିଵ 𝐓෡                                (21) 

𝛿𝐛௕
ଵ =  𝐛መ ௕

ଵ −𝐛௕
ଵ                            (22) 

𝛿𝐛௕
ଶ =  𝐛መ ௕

ଶ−𝐛௕
ଶ                           (23) 

 

Similarly to before, the left-
invariant error for the pedestrian 
navigation states defined on 
𝑆𝐸ଶ(3)  can be written by 
expanding the left-invariant 
given by Equation (21). 
Expanding yields, 

𝛿𝐓 = 𝐓ିଵ 𝐓෡ =  ቎
𝐂௡௕

୘ −𝐂௡௕
୘ 𝐯௡

௭௪
௡ −𝐂௡௕

୘ 𝐫௡
௭௪

𝟎 1 0
𝟎 0 1

቏ ቎
𝐂෠௡௕ 𝐯ො௡

௭௪
௡ 𝐫ො௡

௭௪

𝟎 1 0
𝟎 0 1

቏ 

= ቎
𝐂௡௕

୘ 𝐂෠௡௕  𝐂௡௕
୘ (𝐯ො௡

௭௪/௡
− 𝐯௡

௭௪/௡
) 𝐂௡௕

୘ (𝐫ො௡
௭௪ − 𝐫௡

௭௪)
𝟎 1 0
𝟎 0 1

቏               (22) 

 
Now, the left-invariant errors 

are defined to be as Equation 
(23) to (25). 

𝛿𝐂 =  𝐂௡௕
୘ 𝐂෠௡௕                             (23) 

𝛿𝐯 = 𝐂௡௕
୘ (𝐯ො௡

௭௪/௡
− 𝐯௡

௭௪/௡
)  (24) 

𝛿𝐫 = 𝐂௡௕
୘ (𝐫ො௡

௭௪ − 𝐫௡
௭௪)            (25) 

 
-With the addition of rate gyro 

and accelerometer bias, the 
continuous-time process model 
is no longer group affine. As a 
result, like the regular EKF or 
Multiplicative EKF (MEKF), 

error propagation can be 
performed on each state 
independently. However, unlike 
the regular EKF, the error 
definition used in this 
propagation is unique — the 
left-invariant error definitions 
will be applied to the error 
propagation. 

With ( .̂ ) is defined as 
measurements that include 
estimated bias, the attitude error 
propagation is given Equation 
(26). 

𝛿𝐂̇ =  𝐂̇௡௕
୘ 𝐂෠௡௕ + 𝐂௡௕

୘ 𝐂෠̇௡௕ =  −(𝐮௕
ଵ + 𝐛௕

ଵ + 𝐰௕
ଵ)×𝐂௡௕

୘ 𝐂෠௡௕ + 𝐂௡௕
୘ 𝐂෠௡௕(𝐮௕

ଵ +

𝐛መ ௕
ଵ )× =  𝐂௡௕

୘ 𝐂෠௡௕൫𝐮௕
ଵ + 𝐛መ ௕

ଵ ൯
×

−൫𝐮௕
ଵ + 𝐛௕

ଵ + 𝐰௕
ଵ൯

×
𝐂௡௕

୘ 𝐂෠௡௕ =

 𝐂௡௕
୘ 𝐂෠௡௕  ቀ𝐮௕

ଵ ×
+ 𝐛መ ௕

ଵ ×
ቁ − ቀ𝐮௕

ଵ ×
+ 𝐛௕

ଵ ×
+ 𝐰௕

ଵ×
ቁ 𝐂௡௕

୘ 𝐂෠௡௕ =  𝛿𝐂 ቀ𝐮௕
ଵ ×

+

𝐛መ ௕
ଵ ×

ቁ − ቀ𝐮௕
ଵ ×

+ 𝐛௕
ଵ ×

+ 𝐰௕
ଵ×

ቁ 𝛿𝐂                                                                           (26) 
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Now, Equation (26) can be 
linearised by letting δ𝐂 ≈ 1 +

𝛿𝛏∅×
, 𝐛௕

ଵ = 𝐛መ ௕
ଵ − δ𝐛௕

ଵ  and 

𝐰௕
ଵ = 𝛿𝐰௕

ଵ  as shown in 

Equation (27). Neglecting 
product terms and cancelling 
necessary terms yields, Equation 
(27) is shown as Equation (28). 

 

𝛿𝛏̇∅×
= ቀ𝟏 + 𝛿𝛏∅×

ቁ ቀ𝐮௕
ଵ ×

+ 𝐛መ ௕
ଵ ×

ቁ − ቀ𝐮௕
ଵ ×

+ 𝐛መ ௕
ଵ ×

− 𝛿𝐛௕
ଵ ×

+ 𝛿𝐰௕
ଵ×

ቁ ቀ𝟏 +

𝛿𝛏∅×
ቁ = 𝐮௕

ଵ ×
+ 𝐛መ ௕

ଵ ×
) +  𝛿𝛏∅×

ቀ𝐮௕
ଵ ×

+ 𝐛መ ௕
ଵ ×

ቁ − ቀ𝐮௕
ଵ ×

+ 𝐛መ ௕
ଵ ×

− 𝛿𝐛௕
ଵ ×

+

𝛿𝐰௕
ଵ×

ቁ − ቀ𝐮௕
ଵ ×

+ 𝐛መ ௕
ଵ ×

− 𝛿𝐛௕
ଵ ×

+ 𝛿𝐰௕
ଵ×

ቁ 𝛿𝛏∅×
                                                   (27) 

𝛿𝛏̇∅×
= 𝛿𝛏∅×

𝐮௕
ଵ ×

+ 𝛿𝛏∅×
𝐛መ ௕

ଵ ×
+ 𝛿𝐛௕

ଵ ×
− 𝛿𝐰௕

ଵ×
− 𝐮௕

ଵ ×
𝛿𝛏∅×

− 𝐛መ ௕
ଵ ×

𝛿𝛏∅×
=

𝛿𝛏∅×
𝐮௕

ଵ ×
− 𝐮௕

ଵ ×
𝛿𝛏∅×

+ 𝛿𝛏∅×
𝐛መ ௕

ଵ ×
− 𝐛መ ௕

ଵ ×
𝛿𝛏∅×

+ 𝛿𝐛௕
ଵ ×

− 𝛿𝐰௕
ଵ×

                (28) 
 

To simplify, the identity as 
shown in Equation (29) must be 
applied, where 𝐮, 𝐯 ∈ ℝଷ. 
𝐮×𝐯× − 𝐯×𝐮× = (𝐮×𝐯)×     (29) 
 
Applying Equation (29) to the 

term 𝛿𝛏∅×
𝐮௕

ଵ ×
− 𝐮௕

ଵ ×
𝛿𝛏∅×

 and 

𝛿𝛏∅×
𝐛መ ௕

ଵ ×
− 𝐛መ ௕

ଵ ×
𝛿𝛏∅×

 yields, 

𝛿𝛏∅×
𝐮௕

ଵ ×
− 𝐮௕

ଵ ×
𝛅𝛏∅×

=

−൫𝐮௕
ଵ ×

𝛿𝛏∅൯
×

                               (30) 

𝛿𝛏∅×
𝐛መ ௕

ଵ ×
− 𝐛መ ௕

ଵ ×
𝛿𝛏∅×

=

− ቀ𝐛መ ௕
ଵ ×

𝛿𝛏∅ቁ
×

                              (31) 

 
Thus, after uncrossing both 

sides, the full linearised attitude 
error dynamics, Equation (28) 
can be written as Equation (32). 

𝛿𝛏̇∅×
= −൫𝐮௕

ଵ ×
𝛿𝛏∅൯

×
−

ቀ𝐛መ ௕
ଵ ×

𝛿𝛏∅ቁ
×

+ 𝛿𝐛௕
ଵ ×

− 𝛿𝐰௕
ଵ×

=

൫−𝐮௕
ଵ − 𝐛መ ௕

ଵ ൯
×

𝛿𝛏∅ + 𝛿𝐛௕
ଵ ×

−

𝛿𝐰௕
ଵ×

                                                   (32) 
 

Letting 𝛿𝐛𝐛
ଵ = 𝛿𝛏𝐛ଵ

 yields, 

𝛿𝛏̇∅ = 𝐀𝟏𝛿𝛏 − 𝛿𝐰𝐛
𝟏                 (33) 

 
where the matrix 𝐀ଵ is given by, 

𝐀ଵ = ቂ൫−𝐮௕
ଵ −

𝐛መ ௕
ଵ ൯

×
𝟎 𝟎 𝟏 𝟎 ቃ                 (34) 

 
The velocity error propagation is 
given by Equation (35). 

𝛿𝐯̇ = 𝐂̇௡௕
୘ ቀ𝐯ො௡

௭௪/௡
− 𝐯௡

௭௪/௡
ቁ + 𝐂௡௕

୘ ቀ𝐯ො̇௡
௭௪/௡

− 𝐯̇௡
௭௪/௡

ቁ = −൫𝐮௕
ଵ + 𝐛௕

ଵ +

𝐰௕
ଵ൯

×
𝐂௡௕

୘ ቀ𝐯ො௡
௭௪/௡

− 𝐯௡
௭௪/௡

ቁ + 𝐂௡௕
୘ ቀ൫𝐂෠𝐧𝐛൫𝐮௕

ଶ + 𝐛መ ௕
ଶ൯ + 𝐠௡൯ − (𝐂௡௕൫𝐮௕

ଶ +
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𝐛௕
ଶ + 𝐰௕

ଶ൯ + 𝐠௡)ቁ = −൫𝐮௕
ଵ + 𝐛௕

ଵ + 𝐰௕
ଵ൯

×
𝛿𝐯 + 𝛿𝐂൫𝐮௕

ଶ + 𝐛መ ௕
ଶ൯ − ൫𝐮௕

ଶ + 𝐛௕
ଶ +

𝐰௕
ଶ൯                                                                                                                                             (35) 

 
Next, replacing δ𝐯 = 𝐉δ𝛏𝐯 , 

𝐛௕
ଵ = 𝐛መ ௕

ଵ − δ𝐛௕
ଵ , 𝐛௕

ଶ = 𝐛መ ௕
ଶ − δ𝐛௕

ଶ 
and linearising (using Equation 
(1) and (6)) by letting 𝐉 ≈ 𝟏 , 

δ𝐂 ≈ 𝟏 + δ𝛏∅×
, 𝐰௕

ଵ = δ𝐰௕
ଵ  and 

𝐰௕
ଶ = δ𝐰௕

ଶ yields, 
𝛿𝛏̇𝐯 = −൫𝐮௕

ଵ + 𝐛መ ௕
ଵ − 𝛿𝐛௕

ଵ +

 𝛿𝐰௕
ଵ൯

×
𝛿𝛏𝐯 + ቀ𝟏 + 𝛿𝛏∅×

 ቁ ൫𝐮𝐛
ଶ +

𝐛መ 𝐛
ଶ൯ − ൫𝐮௕

ଶ + 𝐛መ ௕
ଶ −  𝛿𝐛௕

ଶ + 𝛿𝐰௕
ଶ൯        

                                                 (36) 
Neglecting higher order terms 
yields, 

𝛿𝛏̇𝐯 = ൫−𝐮௕
ଵ − 𝐛መ ௕

ଵ ൯
×

𝛿𝛏𝐯 +

൫−𝐮௕
ଶ − 𝐛መ ௕

ଶ൯
×

𝛿𝛏̇∅ +  𝛿𝐛௕
ଶ −

𝛿𝐰௕
ଶ                                              (37) 

Letting δ𝐛ୠ
ଶ = δ𝛏𝐛ଶ

 yields, 

𝛿𝛏̇𝐯 = 𝐀ଶ𝛿𝛏 − 𝛿𝐰௕
ଶ                (38) 

 
where the 𝐀ଶ is given by 

𝐀ଶ = ቂ−൫𝐮௕
ଶ + 𝐛መ ௕

ଶ൯
×

− ൫𝐮௕
ଵ +

𝐛መ ௕
ଵ ൯

×
𝟎 𝟎 𝟏ቃ                          (39) 

Next, the continuous-time 
position error dynamics are 
given by Equation (40). 

𝛿𝐫̇ =  𝐂̇௡௕
୘ (𝐫ො௡

௭௪ − 𝐫௡
௭௪) + 𝐂௡௕

୘ ൫𝐫ො̇௡
௭௪ − 𝐫̇௡

௭௪൯ = −(𝐮௕
ଵ + 𝐛௕

ଵ +

𝐰௕
ଵ)×𝐂௡௕

𝐓 (𝐫ො௡
௭௪ − 𝐫௡

௭௪) + 𝐂௡௕
୘ ൫𝐫ො̇௡

௭௪ − 𝐫̇௡
௭௪൯ = −(𝐮௕

ଵ + 𝐛௕
ଵ +

𝐰௕
ଵ)×𝛿𝐫 + 𝛿𝐯 = −൫𝐮௕

ଵ + 𝐛መ ௕
ଵ − 𝛿𝐛௕

ଵ +  𝛅𝐰௕
ଵ൯

×
𝐉𝛿𝛏𝐫 + 𝐉𝛿𝛏𝐯               (40) 

 

Linearizing by letting 𝐉 ≈

𝟏, 𝐰௕
ଵ = 𝛿𝐰௕

ଵ  and neglecting 
higher order terms yields, 

𝛿𝝃̇୰ = −൫𝐮௕
ଵ + 𝐛መ ௕

ଵ൯
×

𝛿𝝃୰ +

𝛿𝝃୴ = 𝐀ଷ𝛿𝛏                                 (41) 
 
where the matrix 𝐀𝟑 is given by 
𝐀𝟑 =

ൣ𝟎 𝟏 −൫𝐮௕
ଵ + 𝐛መ ௕

ଵ ൯
×

𝟎 𝟎൧    

                                             (42) 

Lastly, letting δ𝐛ୠ = δ𝛏ୠ,  the 
bias error propagation is, 

𝛿𝛏𝐛ଵ
= 𝐛መ̇ ௕

ଵ − 𝐛̇௕
ଵ = −𝐰௕

ଷ =

−𝐰௕
ସ                                                 (43) 

𝛿𝛏𝐛ଶ
= 𝐛መ̇ ௕

ଶ − 𝐛̇௕
ଶ = −𝐰௕

ସ =

−𝐰௕
ହ                                                 (44) 

 
The full linearised 𝐀 matrix is 

then written by concatenating 
each of the previous matrices 
vertically. The linearized error 
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dynamics are given as Equation 
(45). 

𝛿𝝃̇ =

⎣
⎢
⎢
⎢
⎢
⎡−൫𝐮௕

ଵ + 𝐛መ ௕
ଵ ൯

×
𝟎 𝟎 𝟏 𝟎

−൫𝐮௕
ଶ + 𝐛መ ௕

ଶ൯
×

−൫𝐮௕
ଵ + 𝐛መ ௕

ଵ ൯
×

𝟎 𝟎 𝟏

𝟎 𝟏 −൫𝐮௕
ଵ + 𝐛መ ௕

ଵ ൯
×

𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎⎦

⎥
⎥
⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝑨

𝛿𝝃 −

⎣
⎢
⎢
⎢
⎡
𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏⎦

⎥
⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
𝐋

𝛿𝐰                                                                                                      (45) 

 
The continuous time linearised 

process model is then discretized 
using any appropriate method. 
In this case, a standard forward 
Euler discretization scheme was 
selected, and the discrete time 
process model Jacobians are 
written as, 
𝐀௞ = 𝟏 + 𝑇𝐀 , 𝐋௞ = 𝑇𝐋       (46) 
 
Then, the prediction step is 
carried out as, 

𝐗ෙ௞ = 𝐅௞ିଵ൫𝐗෡௞ିଵ, 𝐮௞ିଵ൯ 

𝐏ෙ௞ = 𝐀௞ିଵ𝐏෡௞ିଵ𝐀௞ିଵ
୘ +

𝐋௞ିଵ𝐐௞ିଵ𝐋௞ିଵ
୘                                (47) 

 
E. IEKF Discrete-Time 

Correction 
The left-invariant correction is 

used in the form of 

𝐓෡ = 𝐓ෙexp(−(𝐊௞ 𝐳௞)∧ )     (48) 
 

where 𝐊௞  is the Kalman gain 
and 𝐳௞  is the innovation term, 
and an additive correction for 
the bias state (if there exist such 
measurements). The velocity 
measurement model given by 
Equation (18) is left-invariant, 
and therefore a left-invariant 
innovation of the form 𝒛௞  =

[𝐗ෙଵ
ିଵ(𝐲௞ −  𝐲ු௞ )] is used. 

The full innovation term is then 
given by Equation (49). 

𝒛௞  = [𝐓ෙ௞
ିଵ൫𝐲௡ೖ 

ଵ −  𝐲ු௡ೖ
ଵ ൯]     (49) 

 
The Kalman gain, 𝐊௞  is 

computed through the standard 
Kalman Filter equations given 
by, 
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𝐒௞ = 𝐇௞ 𝐏ෙ௞ 𝐇௞
୘ +  𝐌௞ 𝐑௞ 𝐌௞

୘  
                                             (50) 

𝐊௞ =  𝐏ෙ௞ 𝐇௞
୘ 𝐒௞

ିଵ                     (51) 
 
The correction is computed by, 

𝐓෡ = 𝐓ෙ exp(−(𝐊௞𝐳௞)^)         (52) 
 
with the covariance is computed 
using Equation (53). 

𝐏෡௞  = ( 𝟏 − 𝐊௞𝐇௞ ) 𝐏ෙ௞ ( 𝟏 −

𝐊௞𝐇௞ ) 
୘ +  𝐊௞ 𝐌௞ 𝐑௞ 𝐌௞

୘ 𝐊௞
୘   

                                             (53) 
To compute the matrices 𝐇௞ 

and 𝐌௞ , the measurement 
models must be linearized. 
However, in the linearization, it 
is key that the correct error term 
be used. In this case, the left 

invariant error definition must 
be used. 

Recall that the left-invariant 
errors are given by, 

𝛿𝐂௞ =  𝐂୬ୠೖ

୘ 𝐂ෘ୬ୠೖ
                      (54) 

𝛿𝐯௞ =  𝐂୬ୠೖ

୘ (𝐯ු௡
௭ೖ௪ /௡

−

𝐯௡
௭ೖ௪ /௡

)                                         (55) 

𝛿𝐫௞ =  𝐂୬ୠೖ

୘ (𝐫ු௡
௭ೖ௪

− 𝐫௡
௭ೖ௪

)  (56) 

 
Velocity Correction: First, the 
measurement models for the 
velocity sensor must be 
linearized. Equation (57) shows 
the expanding equation of 
Equation (49) yields. Next, to 

linearize, let 𝛿𝐓ෙ௞
௅షభ

≈ ቀ𝟏 −

𝜹𝝃ෘ௞
𝑻^

ቁ  and 𝐯௡
ଵ

௞
= 𝛿𝐯௡

ଵ
௞

. Then, 

𝐳௞ is written as Equation (58). 
 

𝐓ෙ௞
ିଵ ቌ൥

𝐲௡
ଵ

௞

0
0

൩ − ൥
𝒚෕௡

ଵ
௞

0
0

൩ቍ = 𝐓ෙ௞
ିଵ ൭𝐓௞ ൥

𝟎
1
0

൩ + ൥
𝐯௡

ଵ
௞

0
0

൩ − 𝐓ෙ௞ ൥
𝟎
1
0

൩൱ = 𝛿𝐓ෙ௞
ିଵ ൥

𝟎
1
0

൩ +

𝐓ෙ௞
ିଵ ൥

𝐯௡
ଵ

௞

0
0

൩ − ൥
𝟎
1
0

൩                                                                                                          (57) 

𝐳௞ ≈ ൬𝟏 − 𝛿𝝃ෘ௞
்⬚⬚

൰ ൥
𝟎
1
0

൩ + 𝐓ෙ௞
ିଵ ൥

𝛿𝐯௡
ଵ

௞

0
0

൩ − ൥
𝟎
1
0

൩ = −𝛿𝝃ෘ௞
𝑻⬚⬚

൥
𝟎
1
0

൩ +

𝐓ෙ௞
ି𝟏 ൥

𝛿𝐯௡
ଵ

௞

0
0

൩ = − ቎
𝛿𝝃ෘ௞

∅×
𝛿𝝃ෘ௞

𝒗 𝛿𝝃ෘ௞
𝒓

𝟎 0 0
𝟎 0 0

቏ ൥
𝟎
1
0

൩ + 𝐓ෙ௞
ି𝟏 ൥

𝛿𝐯௡
ଵ

௞

0
0

൩ =  𝐇𝛿𝝃ෘ𝑻 +

𝐓ෙ௞
ି𝟏 ൥

𝛿𝐯௡
ଵ

௞

0
0

൩                                                                                                                               (58) 
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where  

𝐇 = ൥
𝟎 −𝟏 𝟎
𝟎 0 0
𝟎 0 0

൩                       (59) 

 
Note that the bottom row of 
Equation (59) is only zeros. 
Therefore, Equation (58) can be 
written as Equation (60). 

𝒛௞ =  𝐇𝛿𝝃ෘ௞
் + 𝐌௞𝛿𝐯௡

ଵ
௞
         (60) 

 
where 𝐇 =  [𝟎 −𝟏 𝟎]     (61) 
 
The full linearized 𝐇𝒌 matrix is 
given as, 
𝐇𝒌 =  [𝟎 𝟎 −𝟏 𝟎 𝟎](62) 
 

The measurement model 
Jacobian with respect to the 
noise, 𝐌𝒌, is written as, 

𝐌௞ =  𝐂ෘ௡௕
୘                                     (63) 

 
III. Results and Discussions 

For a foot-mounted inertial 
pedestrian navigation IEKF, the 
full linearised error dynamics for  
𝑆𝐸ଶ(3)  with gyro bias and 
accelerometer bias are 
successfully derived and can be 
written as Equation (64) with 
full linearised innovation 𝒛 
using velocity sensor. That can 
be written as Equation (65). 

𝛿𝝃̇ =

⎣
⎢
⎢
⎢
⎢
⎡−൫𝐮ୠ

ଵ + 𝐛መ ୠ
ଵ൯

×
𝟎 𝟎 𝟏 𝟎

−൫𝐮ୠ
ଶ + 𝐛መ ୠ

ଶ൯
×

−൫𝐮ୠ
ଵ + 𝐛መ ୠ

ଵ൯
×

𝟎 𝟎 𝟏

𝟎 𝟏 −൫𝐮ୠ
ଵ + 𝐛መ ୠ

ଵ൯
×

𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎⎦

⎥
⎥
⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝑨

𝛿𝝃 +

⎣
⎢
⎢
⎢
⎡
−𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 −𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏⎦

⎥
⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
𝐋

𝛿𝐰                                                                                       (64) 

𝒛 = ൦

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎

൪

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
𝑯

𝛿𝝃 + ൦

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝐂ෘ௡௕

୘ 𝟎
𝟎 𝟎 𝟎 𝟎

൪

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
𝑴

𝛿𝒗                                      (65) 

 
It is important to note that the 

Jacobians for the process model, 
𝑨, derived using invariant error 
definitions by Equation (64), 
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rely solely on the measurements 
from rate gyros and 

accelerometers, 𝐮௕
𝟏  and 𝐮௕

𝟐 , 
along with the bias estimates. In 
contrast, the Jacobians for the 
Extended Kalman Filter (EKF) 
[10] depend not only on the rate-
gyros and accelerometers 
measurements and bias 
estimates, but also on the 

estimated attitude, 𝐂෠ୟୠ . 
Additionally, the Jacobian for 
the measurement model, 𝑯 , 
given in Equation (65), is not 
influenced by the attitude 
estimates, unlike the 
measurement model 𝐇∗ 
discussed in [11]. As a result, the 
IEKF Jacobians have less 
dependence on state estimates 
compared to those from the EKF, 
which gives the IEKF an 
advantage over the MEKF. This 
is because poor state estimates 
can lead to inaccurate Jacobians, 
undermining performance. The 
invariant framework used in the 
IEKF makes it less sensitive to 
initialization errors and provides 
better performance. 
 
IV. Conclusion 

This article revisits the theory 
of Lie Groups and the Invariant 

Extended Kalman Filter (IEKF) 
and applies these concepts to 
design an observer for a foot-
mounted inertial pedestrian 
navigation system. Specifically, 
it employs the IEKF framework 
with elements from a matrix Lie 
Group to derive a design matrix, 
which contains the Jacobians for 
the process model and the 
measurement model. This 
approach aims to create a robust 
and accurate navigation system. 
The derived Jacobians have 
reduced dependence on state 
estimates, as inaccurate 
estimates can lead to faulty 
Jacobians and, ultimately, 
unreliable navigation. The paper 
derives the complete linearized 
error dynamics for 𝑆𝐸ଶ(3) , 
considering both gyro bias and 
accelerometer bias, offering a 
comprehensive and precise 
depiction of the system's 
behavior. 

Next, the full linearized 
measurement model for the 
velocity sensor is developed, 
capitalizing on the fact that there 
are times during the stance phase 
when a pedestrian's velocity 
should be theoretically zero. 
This measurement model is 
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demonstrated to be left invariant, 
allowing it to be smoothly 
integrated into the IEKF 
framework. By leveraging this 
left invariance, the IEKF can 
effectively update the system's 
states and correct any sensor 
measurement errors. Ultimately, 
this method should enhance the 
accuracy and robustness of the 
foot-mounted inertial pedestrian 
navigation system. 

Future work will include 
simulation and experimental 
studies on the foot-mounted 
pedestrian navigation system. 
Additional aided measurements, 
like magnetometer readings for 
attitude estimation, particularly 
heading, will be explored and 
tested within the IEKF 
framework, allowing for further 
investigation into the 
consistency and observability of 
the states. 
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