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Abstract— A serial manipulator exhibits 
kinematic redundancy when the number of 
dimensions in its joint space exceeds that of 
its end-effector space. This paper proposes 
a solution to resolve the redundancy issue in 
a 9-Degree-of-Freedom (DOF) serial 
manipulator. The solution involves 
segmenting the robot's kinematic model into 
two sections: a 3-DOF base (axes 1-3) and 
a 6-DOF body (axes 4-9). Denavit-
Hartenberg (D-H) parameters and 
homogeneous transformation matrices are 
used to formulate the forward kinematics 
equations for both sections. Subsequently, 
the inverse kinematics solutions for each 
section are derived using the Jacobian 
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Abstract— This paper describes a 
derivation of a design matrix for a foot-
mounted inertial pedestrian navigation. The 
design matrix sometimes known as state 
space propagation matrix, or transition 
matrix, that propagate the modelled states 
over time. An inertial sensor is assumed to 
be strapped tightly on the foot of a 
pedestrian, and therefore the 
measurements obtained are assumed to be 
highly correlated with the movement of a 
foot. This permit the use of velocity update 
whenever the foot is on the ground. The 
design matrix is then derived using the 
Invariant Extended Kalman Filter (IEKF) 
framework. The navigation state is 
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represented as an element of the matrix Lie 
group of double direct isometries, which is a 
mathematical description of the space in 
which the pedestrian moves, including 
position, velocity, and attitude. The model 
also incorporates accelerometers and rate-
gyros biases, which are common in inertial 
sensors. A comparison with the design 
matrix derived from the standard Extended 
Kalman Filter (EKF) are made, and will be 
shown unvarying with attitude estimates, 
which is an improvement over the standard 
EKF.   

 
I. Introduction 

The Extended Kalman Filter 
(EKF) is a widely used 
mathematical tool for estimating 
key variables and correcting 
errors [1]. For an inertial 
pedestrian navigation, the EKF 
typically involves a 15-state 
model, organized in a 3-by-3 
matrix, encompassing position, 
velocity, orientation, 
accelerometer bias, and 
gyroscope bias. This model is 
used to predict how these states 
change over time. 

When a new measurement is 
received from an external sensor, 
it updates the estimated states. 
The error-based EKF approach 
compares the predicted states 

with the latest sensor 
measurement to calculate the 
error. By giving weight to this 
error, it's used to adjust the 
predicted states, thereby refining 
or updating them. This loop of 
prediction and correction based 
on new measurements makes the 
EKF a powerful estimation tool. 

The design matrix is a 
mathematical framework that 
outlines how states change over 
time within the context of state 
estimation using the Extended 
Kalman Filter (EKF), also 
known as the Multiplicative 
Extended Kalman Filter 
(MEKF). In the EKF, the state 
vector is continuously predicted 
and updated based on data from 
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external sensors. The design 
matrix plays a critical role in 
modeling the relationship 
between the state vector and the 
sensor measurements, allowing 
the state vector to be projected 
forward in time. 

Typically, the design matrix is 
derived from the underlying 
physical model of the system 
being estimated. For example, in 
inertial navigation, the design 
matrix establishes the 
relationship between 
acceleration, velocity, and 
position states, illustrating how 
they evolve over time. It also 
incorporates terms to represent 
sensor biases and other sources 
of error. 

Recent studies in [2], [3], and 
[4] introduced a new method for 
state estimation on Lie groups 
using the Invariant Extended 
Kalman Filter (IEKF). The Lie 
group framework allows 
modeling a system's state that 
evolves on a nonlinear manifold, 
offering a broader scope than the 
traditional Kalman filtering 
approach, which typically uses 
Euclidean space. Lie groups [10] 
are mathematical constructs that 
capture a system's symmetry 

properties. Essentially, a Lie 
group is a collection of 
transformations that can be 
smoothly parameterized and that 
also form a differentiable 
manifold. In other words, it's a 
group with a smooth structure. 
When a system is invariant 
under a Lie group's 
transformations, it means the 
system's characteristics remain 
consistent when these 
transformations are applied. The 
IEKF is a state estimation 
algorithm that operates on Lie 
groups. It is a nonlinear filter 
that can handle a wide range of 
nonlinear and non-Gaussian 
systems, making it well-suited 
for many real-world applications, 
including inertial pedestrian 
navigation [5]. 

In this article, the Invariant 
Extended Kalman Filter (IEKF) 
algorithm is applied to a foot-
mounted inertial pedestrian 
navigation system. The 
navigation state is represented as 
an element of the matrix Lie 
group of double direct 
isometries, 𝑆𝑆𝑆𝑆2(3) , which 
describes the space 
encompassing position, velocity, 
and attitude in which the 
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pedestrian operates. This model 
also includes biases from 
accelerometers and rate gyros, 
common components in inertial 
sensors. The design matrix for 
the navigation system is 
developed and discussed. It 
demonstrates how the stationary 
phase during a pedestrian's walk 
can be incorporated into the 
matrix as part of the external 
measurements used to update the 
system. This phase, often 
referred to as Zero Velocity 
Update [6], is shown to be a left-
invariant measurement within 
the IEKF framework. 
 
II. Methodology 
A. System Modelling 

Let point 𝑧𝑧  be the centre of 
mass of a rigid body rotating and 
translating in 3D space. Let ℱ𝑛𝑛 
be a, North-East-Down (NED) 
navigation reference frame and 
ℱ𝑏𝑏   be the body frame. Point 𝑤𝑤 
is a reference point in the inertial 
frame that is not moving. The 
position of 𝑧𝑧  relative to 𝑤𝑤 , 
resolved in the navigation frame 
is denoted 𝐫𝐫𝑛𝑛

𝑧𝑧𝑧𝑧. 
The velocity of the body with 

respect to ℱ𝑛𝑛 , resolved in ℱ𝑛𝑛  is 
denoted 𝐯𝐯𝑛𝑛

𝑧𝑧𝑧𝑧/𝑛𝑛 . The attitude of 

the body is described by DCM 
𝑪𝑪𝑛𝑛𝑏𝑏 . The angular velocity of the 
body, with respect to inertial 
frame, a, resolved in ℱ𝑏𝑏 is 
denoted 𝛚𝛚𝑏𝑏

𝑏𝑏𝑏𝑏. The kinematics of 
the body are then given by 
Equation (1) to (3). 
�̇�𝐂𝑛𝑛𝑏𝑏 =  𝐂𝐂𝑛𝑛𝑏𝑏𝛚𝛚𝑏𝑏

𝑏𝑏𝑏𝑏×                          (1) 
�̇�𝐯𝑛𝑛

𝑧𝑧𝑧𝑧/𝑛𝑛 = 𝐚𝐚𝑛𝑛
𝑧𝑧𝑧𝑧/𝑛𝑛/𝑛𝑛                         (2) 

�̇�𝐫𝑛𝑛
𝑧𝑧𝑧𝑧/𝑛𝑛 = 𝐯𝐯𝑛𝑛

𝑧𝑧𝑧𝑧/𝑛𝑛/𝑛𝑛                         (3) 
 
B. Continuous Time Process 

Model 
Rate-gyro measurements that 

are biased and noisy, 𝐮𝐮𝒃𝒃
𝟏𝟏  , and 

accelerometer measurements 
that are biased and noisy, 𝐮𝐮𝒃𝒃

𝟐𝟐 are 
given by Equation (4) and (5), 
respectively. 
𝐮𝐮𝑏𝑏

1 = 𝛚𝛚𝑏𝑏
𝑏𝑏𝑏𝑏−𝐛𝐛𝑏𝑏

1 − 𝐰𝐰𝑏𝑏
1                 (4) 

𝐮𝐮𝑏𝑏
2 = 𝐟𝐟𝒃𝒃−𝐛𝐛𝑏𝑏

2 − 𝐰𝐰𝑏𝑏
2                      (5) 

 
where noise 𝐰𝐰𝑏𝑏

1~𝒩𝒩(𝟎𝟎, 𝑸𝑸1)  and 
noise 𝐰𝐰𝑏𝑏

2~𝒩𝒩(𝟎𝟎, 𝑸𝑸2) . The bias 
𝐛𝐛𝑏𝑏

1  is modelled as a random walk 
as shown in Equation (6). 
�̇�𝐛𝑏𝑏

1 = 𝐰𝐰𝑏𝑏
3                                          (6) 

 
where noise 𝐰𝐰𝑏𝑏

3~𝒩𝒩(𝟎𝟎, 𝑸𝑸3) and 
𝐟𝐟𝒃𝒃  is the specific force vector 
resolved in the body frame. The 
accelerometer bias 𝐛𝐛𝑏𝑏

2 is also 
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modelled as a random walk as in 
Equation (7). 
�̇�𝐛𝑏𝑏

2 = 𝐰𝐰𝑏𝑏
4                                          (7) 

 
where noise 𝐰𝐰𝑏𝑏

4~𝒩𝒩(𝟎𝟎,𝑸𝑸4) . 
The acceleration can then be ex- 
pressed as in Equation (8). 

�̇�𝐯𝑛𝑛

zw
𝑛𝑛 = 𝐟𝐟𝑛𝑛 + 𝐠𝐠𝑛𝑛 = 𝐂𝐂𝑛𝑛𝑏𝑏𝐟𝐟𝑛𝑛 + 𝐠𝐠𝑛𝑛 

= 𝐂𝐂𝑛𝑛𝑏𝑏(𝐮𝐮𝑏𝑏
2 + 𝐛𝐛𝑏𝑏

2 + 𝐰𝐰𝑏𝑏
2) + 𝐠𝐠𝑛𝑛 (8) 

 
where 𝐠𝐠𝑛𝑛 is the gravity vector 
resolved in the navigation frame. 
Thus, the continuous-time 
kinematic process model is 
given as Equation (9) to (11). 
�̇�𝐂𝑛𝑛𝑏𝑏 = 𝐂𝐂𝑛𝑛𝑏𝑏(𝐮𝐮𝑏𝑏

1 + 𝐛𝐛𝑏𝑏
1 + 𝐰𝐰𝑏𝑏

1)×(9) 
�̇�𝐯𝑛𝑛

zw/𝑛𝑛 = 𝐂𝐂𝑛𝑛𝑏𝑏(𝐮𝐮𝑏𝑏
2 + 𝐛𝐛𝑏𝑏

2 + 𝐰𝐰𝑏𝑏
2) +

𝐠𝐠𝑛𝑛                                                      (10) 
�̇�𝐫𝑛𝑛

zw/𝑛𝑛 = 𝐯𝐯𝑛𝑛
zw/n                           (11) 

 
The process model can be 

discretized using any 
appropriate discretization 
scheme. In this case, using a 
Forward Euler discretization 
yields as in Equation (12) to (16). 
𝐂𝐂𝑛𝑛𝑏𝑏𝑘𝑘 = 𝐂𝐂𝑛𝑛𝑏𝑏𝑘𝑘−1exp(𝑇𝑇(𝐮𝐮𝑏𝑏𝑘𝑘−1

1 +
𝐛𝐛𝑏𝑏𝑘𝑘−1

1 + 𝐰𝐰𝑏𝑏𝑘𝑘−1
1 )×)                     (12) 

𝐯𝐯𝑛𝑛
z𝑘𝑘w = 𝐯𝐯𝑛𝑛

z𝑘𝑘−1w +
𝑇𝑇(𝐂𝐂𝑛𝑛𝑏𝑏𝑘𝑘−1(𝐮𝐮𝑏𝑏𝑘𝑘−1

2 + 𝐛𝐛𝑏𝑏𝑘𝑘−1
2 +

𝐰𝐰𝑏𝑏𝑘𝑘−1
2 ) + 𝐠𝐠𝑛𝑛)                              (13) 

𝐫𝐫𝑛𝑛
z𝑘𝑘w = 𝐫𝐫𝑛𝑛

z𝑘𝑘−1w + 𝑇𝑇𝐯𝐯𝑛𝑛
𝑧𝑧𝑘𝑘−1w/n   (14)           

𝐛𝐛𝑏𝑏𝑘𝑘
1 = 𝐛𝐛𝑏𝑏𝑘𝑘−1

1 + 𝑇𝑇𝐰𝐰𝑏𝑏𝑘𝑘−1
3           (15) 

𝐛𝐛𝑏𝑏𝑘𝑘
2 = 𝐛𝐛𝑏𝑏𝑘𝑘−1

2 + 𝑇𝑇𝐰𝐰𝑏𝑏𝑘𝑘−1
4           (16) 

 
where 𝑇𝑇 = 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1  is the 
timestep. 

Next, the pedestrian navigation 
states 𝐂𝐂𝑛𝑛𝑏𝑏 , 𝐯𝐯𝑛𝑛

zw/n , 𝐫𝐫𝑛𝑛
𝑧𝑧𝑧𝑧 , 𝐛𝐛𝑏𝑏

1  and 
𝐛𝐛𝑏𝑏

2  can be placed into an element 
of the Lie group 𝑆𝑆𝑆𝑆2(3)  with 
biases as in Equation (17). 
𝐓𝐓𝟏𝟏 =

[
 
 
 
 
 𝐂𝐂𝑛𝑛𝑏𝑏 𝐯𝐯𝒏𝒏 𝐫𝐫𝒏𝒏

1
1

1 𝐛𝐛b
1

1 𝐛𝐛b
2

1 ]
 
 
 
 
 

(17) 

 
C. Measurement Model 

Zero Velocity Update: The 
available measurements are only 
from accelerometers and gyros 
that provide noisy acceleration 
and angular rates measurements 
respectively. First, the velocity 
measurement is inferred through 
a velocity sensor (detector), 
specifically when the foot is 
detected to be in stance phase, 
that the position of the foot is 
assumed to remain fixed in the 
navigation N-E-D frame, and 
therefore the measured pseudo-
velocity is zero, as shown in 
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Figure 1. This is known as Zero 
Velocity Update (ZVU or 
ZUPT), and many variations of 
ZUPT have been experimented 
in navigation system [7], [8], [9]. 
 

 
Figure 1: The red dots are detected for 

stance phase, where velocity is 
assumed to be zero 

 
Velocity pseudo-measurement 

is given by Equation (18), where 
𝐯𝐯𝑛𝑛𝑘𝑘

1 ~𝒩𝒩(𝟎𝟎, 𝑹𝑹1). 
𝒚𝒚𝑛𝑛𝑘𝑘

1 = 𝟎𝟎3×1 = 𝐯𝐯𝑛𝑛
z𝑘𝑘w/n + 𝐯𝐯𝑛𝑛𝑘𝑘

1    (18) 
 

These measurements can be 
written as a function of the 

navigation states contained 
within 𝐓𝐓 as Equation (19). 

[
𝒚𝒚𝑛𝑛𝑘𝑘

1

] = [
𝐯𝐯𝑛𝑛

z𝑘𝑘w/n

] + [
𝐯𝐯𝑛𝑛𝑘𝑘

1

] =

[𝐓𝐓𝑘𝑘 [
𝟎𝟎
1
0

] + [
𝐯𝐯𝑛𝑛𝑘𝑘

1

]]                       (19) 

 
where the measurement model 
for velocity is 𝒚𝒚𝑘𝑘

L = 𝐗𝐗𝑘𝑘𝐛𝐛𝑘𝑘 + 𝐯𝐯𝑘𝑘. 
Therefore, the measurement 
model for the velocity sensor is 
in left-invariant form. 
 
D. IEKF Continuous-Time 

Prediction 
Because the measurement 

model for the velocity sensor is 
left-invariant, a left-invariant 
error definition will be used. 
Thus, the left invariant error for 
the lie group 𝒢𝒢1  is given as 
Equation (20). 

 

𝛿𝛿𝐗𝐗 = 𝐗𝐗−1 �̂�𝐗 = [
𝐓𝐓−𝟏𝟏 𝟎𝟎

𝟏𝟏 −𝐛𝐛𝑏𝑏
1  −𝐛𝐛𝑏𝑏

2

1
1

] [
�̂�𝐓 𝟎𝟎

𝟏𝟏 �̂�𝐛𝑏𝑏
1  �̂�𝐛𝑏𝑏

2

1
1

] =

[
𝐓𝐓−𝟏𝟏�̂�𝐓 𝟎𝟎

1 �̂�𝐛𝑏𝑏
1 − 𝐛𝐛𝑏𝑏

1  �̂�𝐛𝑏𝑏
2 − 𝐛𝐛𝑏𝑏

2

1
1

]                                                                (20) 
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Thus, the left-invariant errors 
can be written as Equation (21) 
to (23). 
𝛿𝛿𝐓𝐓 =  𝐓𝐓−1 �̂�𝐓                                (21) 
𝛿𝛿𝐛𝐛𝑏𝑏

1 =  �̂�𝐛𝑏𝑏
1 −𝐛𝐛𝑏𝑏

1                            (22) 
𝛿𝛿𝐛𝐛𝑏𝑏

2 =  �̂�𝐛𝑏𝑏
2−𝐛𝐛𝑏𝑏

2                            (23) 
 

Similarly to before, the left-
invariant error for the pedestrian 
navigation states defined on 
𝑆𝑆𝑆𝑆2(3)  can be written by 
expanding the left-invariant 
given by Equation (21). 
Expanding yields, 

𝛿𝛿𝐓𝐓 = 𝐓𝐓−1 �̂�𝐓 =  [
𝐂𝐂𝑛𝑛𝑏𝑏

T −𝐂𝐂𝑛𝑛𝑏𝑏
T 𝐯𝐯𝑛𝑛

𝑧𝑧𝑧𝑧
𝑛𝑛 −𝐂𝐂𝑛𝑛𝑏𝑏

T 𝐫𝐫𝑛𝑛
𝑧𝑧𝑧𝑧

𝟎𝟎 1 0
𝟎𝟎 0 1

] [
�̂�𝐂𝑛𝑛𝑏𝑏 �̂�𝐯𝑛𝑛

𝑧𝑧𝑧𝑧
𝑛𝑛 �̂�𝐫𝑛𝑛

𝑧𝑧𝑧𝑧

𝟎𝟎 1 0
𝟎𝟎 0 1

] 

= [
𝐂𝐂𝑛𝑛𝑏𝑏

T �̂�𝐂𝑛𝑛𝑏𝑏 𝐂𝐂𝑛𝑛𝑏𝑏
T (�̂�𝐯𝑛𝑛

𝑧𝑧𝑧𝑧/𝑛𝑛 − 𝐯𝐯𝑛𝑛
𝑧𝑧𝑧𝑧/𝑛𝑛) 𝐂𝐂𝑛𝑛𝑏𝑏

T (�̂�𝐫𝑛𝑛
𝑧𝑧𝑧𝑧 − 𝐫𝐫𝑛𝑛

𝑧𝑧𝑧𝑧)
𝟎𝟎 1 0
𝟎𝟎 0 1

]               (22) 

 
Now, the left-invariant errors 

are defined to be as Equation 
(23) to (25). 
𝛿𝛿𝐂𝐂 =  𝐂𝐂𝑛𝑛𝑏𝑏

T �̂�𝐂𝑛𝑛𝑏𝑏                              (23) 
𝛿𝛿𝐯𝐯 = 𝐂𝐂𝑛𝑛𝑏𝑏

T (�̂�𝐯𝑛𝑛
𝑧𝑧𝑧𝑧/𝑛𝑛 − 𝐯𝐯𝑛𝑛

𝑧𝑧𝑧𝑧/𝑛𝑛)  (24) 
𝛿𝛿𝐫𝐫 = 𝐂𝐂𝑛𝑛𝑏𝑏

T (�̂�𝐫𝑛𝑛
𝑧𝑧𝑧𝑧 − 𝐫𝐫𝑛𝑛

𝑧𝑧𝑧𝑧)            (25) 
 

-With the addition of rate gyro 
and accelerometer bias, the 
continuous-time process model 
is no longer group affine. As a 
result, like the regular EKF or 
Multiplicative EKF (MEKF), 

error propagation can be 
performed on each state 
independently. However, unlike 
the regular EKF, the error 
definition used in this 
propagation is unique — the 
left-invariant error definitions 
will be applied to the error 
propagation. 

With ( .̂ ) is defined as 
measurements that include 
estimated bias, the attitude error 
propagation is given Equation 
(26). 

𝛿𝛿�̇�𝐂 =  �̇�𝐂𝑛𝑛𝑏𝑏
T �̂�𝐂𝑛𝑛𝑏𝑏 + 𝐂𝐂𝑛𝑛𝑏𝑏

T �̇̂�𝐂𝑛𝑛𝑏𝑏 =  −(𝐮𝐮𝑏𝑏
1 + 𝐛𝐛𝑏𝑏

1 + 𝐰𝐰𝑏𝑏
1)×𝐂𝐂𝑛𝑛𝑏𝑏

T �̂�𝐂𝑛𝑛𝑏𝑏 + 𝐂𝐂𝑛𝑛𝑏𝑏
T �̂�𝐂𝑛𝑛𝑏𝑏(𝐮𝐮𝑏𝑏

1 +
�̂�𝐛𝑏𝑏

1 )× =  𝐂𝐂𝑛𝑛𝑏𝑏
T �̂�𝐂𝑛𝑛𝑏𝑏(𝐮𝐮𝑏𝑏

1 + �̂�𝐛𝑏𝑏
1 )×−(𝐮𝐮𝑏𝑏

1 + 𝐛𝐛𝑏𝑏
1 + 𝐰𝐰𝑏𝑏

1)×𝐂𝐂𝑛𝑛𝑏𝑏
T �̂�𝐂𝑛𝑛𝑏𝑏 =

 𝐂𝐂𝑛𝑛𝑏𝑏
T �̂�𝐂𝑛𝑛𝑏𝑏  (𝐮𝐮𝑏𝑏

1 × + �̂�𝐛𝑏𝑏
1 ×) − (𝐮𝐮𝑏𝑏

1 × + 𝐛𝐛𝑏𝑏
1 × + 𝐰𝐰𝑏𝑏

1×) 𝐂𝐂𝑛𝑛𝑏𝑏
T �̂�𝐂𝑛𝑛𝑏𝑏 =  𝛿𝛿𝐂𝐂 (𝐮𝐮𝑏𝑏

1 × +
�̂�𝐛𝑏𝑏

1 ×) − (𝐮𝐮𝑏𝑏
1 × + 𝐛𝐛𝑏𝑏

1 × + 𝐰𝐰𝑏𝑏
1×) 𝛿𝛿𝐂𝐂                                                                           (26) 
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Now, Equation (26) can be 
linearised by letting δ𝐂𝐂 ≈ 1 +
𝛿𝛿𝛏𝛏∅× , 𝐛𝐛𝑏𝑏

1 = �̂�𝐛𝑏𝑏
1 − δ𝐛𝐛𝑏𝑏

1  and 
𝐰𝐰𝑏𝑏

1 = 𝛿𝛿𝐰𝐰𝑏𝑏
1  as shown in 

Equation (27). Neglecting 
product terms and cancelling 
necessary terms yields, Equation 
(27) is shown as Equation (28). 

 
𝛿𝛿�̇�𝛏∅× = (𝟏𝟏 + 𝛿𝛿𝛏𝛏∅×) (𝐮𝐮𝑏𝑏

1 × + �̂�𝐛𝑏𝑏
1 ×) − (𝐮𝐮𝑏𝑏

1 × + �̂�𝐛𝑏𝑏
1 × − 𝛿𝛿𝐛𝐛𝑏𝑏

1 × + 𝛿𝛿𝐰𝐰𝑏𝑏
1×) (𝟏𝟏 +

𝛿𝛿𝛏𝛏∅×) = 𝐮𝐮𝑏𝑏
1 × + �̂�𝐛𝑏𝑏

1 ×) + 𝛿𝛿𝛏𝛏∅× (𝐮𝐮𝑏𝑏
1 × + �̂�𝐛𝑏𝑏

1 ×) − (𝐮𝐮𝑏𝑏
1 × + �̂�𝐛𝑏𝑏

1 × − 𝛿𝛿𝐛𝐛𝑏𝑏
1 × +

𝛿𝛿𝐰𝐰𝑏𝑏
1×) − (𝐮𝐮𝑏𝑏

1 × + �̂�𝐛𝑏𝑏
1 × − 𝛿𝛿𝐛𝐛𝑏𝑏

1 × + 𝛿𝛿𝐰𝐰𝑏𝑏
1×) 𝛿𝛿𝛏𝛏∅×

                                                   (27) 

𝛿𝛿�̇�𝛏∅× = 𝛿𝛿𝛏𝛏∅×𝐮𝐮𝑏𝑏
1 × + 𝛿𝛿𝛏𝛏∅×�̂�𝐛𝑏𝑏

1 × + 𝛿𝛿𝐛𝐛𝑏𝑏
1 × − 𝛿𝛿𝐰𝐰𝑏𝑏

1× − 𝐮𝐮𝑏𝑏
1 ×𝛿𝛿𝛏𝛏∅× − �̂�𝐛𝑏𝑏

1 ×𝛿𝛿𝛏𝛏∅× =
𝛿𝛿𝛏𝛏∅×𝐮𝐮𝑏𝑏

1 × − 𝐮𝐮𝑏𝑏
1 ×𝛿𝛿𝛏𝛏∅× + 𝛿𝛿𝛏𝛏∅×�̂�𝐛𝑏𝑏

1 × − �̂�𝐛𝑏𝑏
1 ×𝛿𝛿𝛏𝛏∅× + 𝛿𝛿𝐛𝐛𝑏𝑏

1 × − 𝛿𝛿𝐰𝐰𝑏𝑏
1×                (28) 

 
To simplify, the identity as 

shown in Equation (29) must be 
applied, where 𝐮𝐮, 𝐯𝐯 ∈ ℝ3. 
𝐮𝐮×𝐯𝐯× − 𝐯𝐯×𝐮𝐮× = (𝐮𝐮×𝐯𝐯)×     (29) 
 
Applying Equation (29) to the 
term 𝛿𝛿𝛏𝛏∅×𝐮𝐮𝑏𝑏

1 × − 𝐮𝐮𝑏𝑏
1 ×𝛿𝛿𝛏𝛏∅×  and 

𝛿𝛿𝛏𝛏∅×�̂�𝐛𝑏𝑏
1 × − �̂�𝐛𝑏𝑏

1 ×𝛿𝛿𝛏𝛏∅× yields, 
𝛿𝛿𝛏𝛏∅×𝐮𝐮𝑏𝑏

1 × − 𝐮𝐮𝑏𝑏
1 ×𝛅𝛅𝛏𝛏∅× =

−(𝐮𝐮𝑏𝑏
1 ×𝛿𝛿𝛏𝛏∅)×

                               (30) 

𝛿𝛿𝛏𝛏∅×�̂�𝐛𝑏𝑏
1 × − �̂�𝐛𝑏𝑏

1 ×𝛿𝛿𝛏𝛏∅× =
− (�̂�𝐛𝑏𝑏

1 ×𝛿𝛿𝛏𝛏∅)
×

                              (31) 
 

Thus, after uncrossing both 
sides, the full linearised attitude 
error dynamics, Equation (28) 
can be written as Equation (32). 

𝛿𝛿�̇�𝛏∅× = −(𝐮𝐮𝑏𝑏
1 ×𝛿𝛿𝛏𝛏∅)× −

(�̂�𝐛𝑏𝑏
1 ×𝛿𝛿𝛏𝛏∅)

×
+ 𝛿𝛿𝐛𝐛𝑏𝑏

1 × − 𝛿𝛿𝐰𝐰𝑏𝑏
1× =

(−𝐮𝐮𝑏𝑏
1 − �̂�𝐛𝑏𝑏

1 )×𝛿𝛿𝛏𝛏∅ + 𝛿𝛿𝐛𝐛𝑏𝑏
1 × −

𝛿𝛿𝐰𝐰𝑏𝑏
1×                                                   (32) 

 
Letting 𝛿𝛿𝐛𝐛𝐛𝐛

1 = 𝛿𝛿𝛏𝛏𝐛𝐛1 yields, 
𝛿𝛿�̇�𝛏∅ = 𝐀𝐀𝟏𝟏𝛿𝛿𝛏𝛏 − 𝛿𝛿𝐰𝐰𝐛𝐛

𝟏𝟏                 (33) 
 
where the matrix 𝐀𝐀1 is given by, 

𝐀𝐀1 = [(−𝐮𝐮𝑏𝑏
1 −

�̂�𝐛𝑏𝑏
1 )×𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 ]                 (34) 

 
The velocity error propagation is 
given by Equation (35). 

𝛿𝛿�̇�𝐯 = �̇�𝐂𝑛𝑛𝑏𝑏
T (�̂�𝐯𝑛𝑛

𝑧𝑧𝑧𝑧/𝑛𝑛 − 𝐯𝐯𝑛𝑛
𝑧𝑧𝑧𝑧/𝑛𝑛) + 𝐂𝐂𝑛𝑛𝑏𝑏

T (�̇̂�𝐯𝑛𝑛
𝑧𝑧𝑧𝑧/𝑛𝑛 − �̇�𝐯𝑛𝑛

𝑧𝑧𝑧𝑧/𝑛𝑛) = −(𝐮𝐮𝑏𝑏
1 + 𝐛𝐛𝑏𝑏

1 +

𝐰𝐰𝑏𝑏
1)×𝐂𝐂𝑛𝑛𝑏𝑏

T (�̂�𝐯𝑛𝑛
𝑧𝑧𝑧𝑧/𝑛𝑛 − 𝐯𝐯𝑛𝑛

𝑧𝑧𝑧𝑧/𝑛𝑛) + 𝐂𝐂𝑛𝑛𝑏𝑏
T ((�̂�𝐂𝐧𝐧𝐛𝐛(𝐮𝐮𝑏𝑏

2 + �̂�𝐛𝑏𝑏
2) + 𝐠𝐠𝑛𝑛) − (𝐂𝐂𝑛𝑛𝑏𝑏(𝐮𝐮𝑏𝑏

2 +
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𝐛𝐛𝑏𝑏
2 + 𝐰𝐰𝑏𝑏

2) + 𝐠𝐠𝑛𝑛)) = −(𝐮𝐮𝑏𝑏
1 + 𝐛𝐛𝑏𝑏

1 + 𝐰𝐰𝑏𝑏
1)×𝛿𝛿𝐯𝐯 + 𝛿𝛿𝐂𝐂(𝐮𝐮𝑏𝑏

2 + �̂�𝐛𝑏𝑏
2) − (𝐮𝐮𝑏𝑏

2 + 𝐛𝐛𝑏𝑏
2 +

𝐰𝐰𝑏𝑏
2)                                                                                                                                             (35) 

 
Next, replacing δ𝐯𝐯 = 𝐉𝐉δ𝛏𝛏𝐯𝐯 , 
𝐛𝐛𝑏𝑏

1 = �̂�𝐛𝑏𝑏
1 − δ𝐛𝐛𝑏𝑏

1 , 𝐛𝐛𝑏𝑏
2 = �̂�𝐛𝑏𝑏

2 − δ𝐛𝐛𝑏𝑏
2  

and linearising (using Equation 
(1) and (6)) by letting 𝐉𝐉 ≈ 𝟏𝟏 , 
δ𝐂𝐂 ≈ 𝟏𝟏 + δ𝛏𝛏∅× , 𝐰𝐰𝑏𝑏

1 = δ𝐰𝐰𝑏𝑏
1  and 

𝐰𝐰𝑏𝑏
2 = δ𝐰𝐰𝑏𝑏

2 yields, 
𝛿𝛿�̇�𝛏𝐯𝐯 = −(𝐮𝐮𝑏𝑏

1 + �̂�𝐛𝑏𝑏
1 − 𝛿𝛿𝐛𝐛𝑏𝑏

1 +
 𝛿𝛿𝐰𝐰𝑏𝑏

1)×𝛿𝛿𝛏𝛏𝐯𝐯 + (𝟏𝟏 + 𝛿𝛿𝛏𝛏∅× ) (𝐮𝐮𝐛𝐛
2 +

�̂�𝐛𝐛𝐛
2) − (𝐮𝐮𝑏𝑏

2 + �̂�𝐛𝑏𝑏
2 −  𝛿𝛿𝐛𝐛𝑏𝑏

2 + 𝛿𝛿𝐰𝐰𝑏𝑏
2)        

                                                 (36) 
Neglecting higher order terms 
yields, 

𝛿𝛿�̇�𝛏𝐯𝐯 = (−𝐮𝐮𝑏𝑏
1 − �̂�𝐛𝑏𝑏

1 )×𝛿𝛿𝛏𝛏𝐯𝐯 +
(−𝐮𝐮𝑏𝑏

2 − �̂�𝐛𝑏𝑏
2)×𝛿𝛿�̇�𝛏∅ +  𝛿𝛿𝐛𝐛𝑏𝑏

2 −
𝛿𝛿𝐰𝐰𝑏𝑏

2                                              (37) 
Letting δ𝐛𝐛b

2 = δ𝛏𝛏𝐛𝐛2 yields, 
𝛿𝛿�̇�𝛏𝐯𝐯 = 𝐀𝐀2𝛿𝛿𝛏𝛏 − 𝛿𝛿𝐰𝐰𝑏𝑏

2                (38) 
 
where the 𝐀𝐀2 is given by 

𝐀𝐀2 = [−(𝐮𝐮𝑏𝑏
2 + �̂�𝐛𝑏𝑏

2)× − (𝐮𝐮𝑏𝑏
1 +

�̂�𝐛𝑏𝑏
1 )×𝟎𝟎 𝟎𝟎 𝟏𝟏]                          (39) 
Next, the continuous-time 

position error dynamics are 
given by Equation (40). 

𝛿𝛿�̇�𝐫 =  �̇�𝐂𝑛𝑛𝑏𝑏
T (�̂�𝐫𝑛𝑛

𝑧𝑧𝑧𝑧 − 𝐫𝐫𝑛𝑛
𝑧𝑧𝑧𝑧) + 𝐂𝐂𝑛𝑛𝑏𝑏

T (�̇̂�𝐫𝑛𝑛
𝑧𝑧𝑧𝑧 − �̇�𝐫𝑛𝑛

𝑧𝑧𝑧𝑧) = −(𝐮𝐮𝑏𝑏
1 + 𝐛𝐛𝑏𝑏

1 +
𝐰𝐰𝑏𝑏

1)×𝐂𝐂𝑛𝑛𝑏𝑏
𝐓𝐓 (�̂�𝐫𝑛𝑛

𝑧𝑧𝑧𝑧 − 𝐫𝐫𝑛𝑛
𝑧𝑧𝑧𝑧) + 𝐂𝐂𝑛𝑛𝑏𝑏

T (�̇̂�𝐫𝑛𝑛
𝑧𝑧𝑧𝑧 − �̇�𝐫𝑛𝑛

𝑧𝑧𝑧𝑧) = −(𝐮𝐮𝑏𝑏
1 + 𝐛𝐛𝑏𝑏

1 +
𝐰𝐰𝑏𝑏

1)×𝛿𝛿𝐫𝐫 + 𝛿𝛿𝐯𝐯 = −(𝐮𝐮𝑏𝑏
1 + �̂�𝐛𝑏𝑏

1 − 𝛿𝛿𝐛𝐛𝑏𝑏
1 +  𝛅𝛅𝐰𝐰𝑏𝑏

1)×𝐉𝐉𝛿𝛿𝛏𝛏𝐫𝐫 + 𝐉𝐉𝛿𝛿𝛏𝛏𝐯𝐯               (40) 
 
Linearizing by letting 𝐉𝐉 ≈
𝟏𝟏, 𝐰𝐰𝑏𝑏

1 = 𝛿𝛿𝐰𝐰𝑏𝑏
1  and neglecting 

higher order terms yields, 
𝛿𝛿�̇�𝝃r = −(𝐮𝐮𝑏𝑏

1 + �̂�𝐛𝑏𝑏
1 )×𝛿𝛿𝝃𝝃r +

𝛿𝛿𝝃𝝃v = 𝐀𝐀3𝛿𝛿𝛏𝛏                                 (41) 
 
where the matrix 𝐀𝐀𝟑𝟑 is given by 
𝐀𝐀𝟑𝟑 =
[𝟎𝟎 𝟏𝟏 −(𝐮𝐮𝑏𝑏

1 + �̂�𝐛𝑏𝑏
1 )× 𝟎𝟎 𝟎𝟎]    

                                             (42) 

Lastly, letting δ𝐛𝐛b = δ𝛏𝛏b,  the 
bias error propagation is, 
𝛿𝛿𝛏𝛏𝐛𝐛1 = �̇̂�𝐛𝑏𝑏

1 − �̇�𝐛𝑏𝑏
1 = −𝐰𝐰𝑏𝑏

3 =
−𝐰𝐰𝑏𝑏

4                                                 (43) 

𝛿𝛿𝛏𝛏𝐛𝐛2 = �̇̂�𝐛𝑏𝑏
2 − �̇�𝐛𝑏𝑏

2 = −𝐰𝐰𝑏𝑏
4 =

−𝐰𝐰𝑏𝑏
5                                                 (44) 

 
The full linearised 𝐀𝐀 matrix is 

then written by concatenating 
each of the previous matrices 
vertically. The linearized error 
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dynamics are given as Equation 
(45). 

𝛿𝛿�̇�𝝃 =

[
 
 
 
 
 −(𝐮𝐮𝑏𝑏1 + �̂�𝐛𝑏𝑏1)

× 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎
−(𝐮𝐮𝑏𝑏2 + �̂�𝐛𝑏𝑏2)

× −(𝐮𝐮𝑏𝑏1 + �̂�𝐛𝑏𝑏1)
× 𝟎𝟎 𝟎𝟎 𝟏𝟏

𝟎𝟎 𝟏𝟏 −(𝐮𝐮𝑏𝑏1 + �̂�𝐛𝑏𝑏1)
× 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎]

 
 
 
 
 

⏟                                  
𝑨𝑨

𝛿𝛿𝝃𝝃 −

[
 
 
 
 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏]

 
 
 
 

⏟            
𝐋𝐋

𝛿𝛿𝐰𝐰                                                                                                      (45) 

 
The continuous time linearised 

process model is then discretized 
using any appropriate method. 
In this case, a standard forward 
Euler discretization scheme was 
selected, and the discrete time 
process model Jacobians are 
written as, 
𝐀𝐀𝑘𝑘 = 𝟏𝟏 + 𝑇𝑇𝐀𝐀 , 𝐋𝐋𝑘𝑘 = 𝑇𝑇𝐋𝐋       (46) 
 
Then, the prediction step is 
carried out as, 
�̌�𝐗𝑘𝑘 = 𝐅𝐅𝑘𝑘−1(�̂�𝐗𝑘𝑘−1, 𝐮𝐮𝑘𝑘−1)
�̌�𝐏𝑘𝑘 = 𝐀𝐀𝑘𝑘−1�̂�𝐏𝑘𝑘−1𝐀𝐀𝑘𝑘−1T +
𝐋𝐋𝑘𝑘−1𝐐𝐐𝑘𝑘−1𝐋𝐋𝑘𝑘−1T (47) 
 
E. IEKF Discrete-Time 

Correction 
The left-invariant correction is 

used in the form of 

�̂�𝐓 = �̌�𝐓exp(−(𝐊𝐊𝑘𝑘 𝐳𝐳𝑘𝑘)∧ )     (48) 
 

where 𝐊𝐊𝑘𝑘  is the Kalman gain 
and 𝐳𝐳𝑘𝑘  is the innovation term, 
and an additive correction for 
the bias state (if there exist such 
measurements). The velocity 
measurement model given by 
Equation (18) is left-invariant, 
and therefore a left-invariant 
innovation of the form 𝒛𝒛𝑘𝑘  =
[�̌�𝐗1−1(𝐲𝐲𝑘𝑘 − �̌�𝐲𝑘𝑘 )] is used. 

The full innovation term is then 
given by Equation (49). 
𝒛𝒛𝑘𝑘  = [�̌�𝐓𝑘𝑘−1(𝐲𝐲𝑛𝑛𝑘𝑘 1 −  �̌�𝐲𝑛𝑛𝑘𝑘1 )]     (49) 
 

The Kalman gain, 𝐊𝐊𝑘𝑘  is 
computed through the standard 
Kalman Filter equations given 
by, 
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𝐒𝐒𝑘𝑘 = 𝐇𝐇𝑘𝑘 �̌�𝐏𝑘𝑘 𝐇𝐇𝑘𝑘
T +  𝐌𝐌𝑘𝑘 𝐑𝐑𝑘𝑘 𝐌𝐌𝑘𝑘

T  
                                             (50) 
𝐊𝐊𝑘𝑘 =  �̌�𝐏𝑘𝑘 𝐇𝐇𝑘𝑘

T 𝐒𝐒𝑘𝑘
−1                     (51) 

 
The correction is computed by, 
�̂�𝐓 = �̌�𝐓 exp(−(𝐊𝐊𝑘𝑘𝐳𝐳𝑘𝑘)^)         (52) 
 
with the covariance is computed 
using Equation (53). 
�̂�𝐏𝑘𝑘  = ( 𝟏𝟏 − 𝐊𝐊𝑘𝑘𝐇𝐇𝑘𝑘 ) �̌�𝐏𝑘𝑘 ( 𝟏𝟏 −
𝐊𝐊𝑘𝑘𝐇𝐇𝑘𝑘 ) 

T +  𝐊𝐊𝑘𝑘 𝐌𝐌𝑘𝑘 𝐑𝐑𝑘𝑘 𝐌𝐌𝑘𝑘
T 𝐊𝐊𝑘𝑘

T   
                                             (53) 

To compute the matrices 𝐇𝐇𝑘𝑘 
and 𝐌𝐌𝑘𝑘 , the measurement 
models must be linearized. 
However, in the linearization, it 
is key that the correct error term 
be used. In this case, the left 

invariant error definition must 
be used. 

Recall that the left-invariant 
errors are given by, 
𝛿𝛿𝐂𝐂𝑘𝑘 =  𝐂𝐂nb𝑘𝑘

T �̌�𝐂nb𝑘𝑘                       (54) 

𝛿𝛿𝐯𝐯𝑘𝑘 =  𝐂𝐂nb𝑘𝑘
T (�̌�𝐯𝑛𝑛

𝑧𝑧𝑘𝑘𝑤𝑤 /𝑛𝑛 −
𝐯𝐯𝑛𝑛

𝑧𝑧𝑘𝑘𝑤𝑤 /𝑛𝑛)                                         (55) 
𝛿𝛿𝐫𝐫𝑘𝑘 =  𝐂𝐂nb𝑘𝑘

T (�̌�𝐫𝑛𝑛
𝑧𝑧𝑘𝑘𝑤𝑤 − 𝐫𝐫𝑛𝑛

𝑧𝑧𝑘𝑘𝑤𝑤)  (56) 
 
Velocity Correction: First, the 
measurement models for the 
velocity sensor must be 
linearized. Equation (57) shows 
the expanding equation of 
Equation (49) yields. Next, to 

linearize, let 𝛿𝛿�̌�𝐓𝑘𝑘
𝐿𝐿−1 ≈ (𝟏𝟏 −

𝜹𝜹�̌�𝝃𝑘𝑘
𝑻𝑻^)  and 𝐯𝐯𝑛𝑛

1
𝑘𝑘 = 𝛿𝛿𝐯𝐯𝑛𝑛

1
𝑘𝑘 . Then, 

𝐳𝐳𝑘𝑘 is written as Equation (58). 
 

�̌�𝐓𝑘𝑘
−1 ([

𝐲𝐲𝑛𝑛
1

𝑘𝑘
0
0

] − [
�̌�𝒚𝑛𝑛

1
𝑘𝑘

0
0

]) = �̌�𝐓𝑘𝑘
−1 (𝐓𝐓𝑘𝑘 [

𝟎𝟎
1
0

] + [
𝐯𝐯𝑛𝑛

1
𝑘𝑘

0
0

] − �̌�𝐓𝑘𝑘 [
𝟎𝟎
1
0

]) = 𝛿𝛿�̌�𝐓𝑘𝑘
−1 [

𝟎𝟎
1
0

] +

�̌�𝐓𝑘𝑘
−1 [

𝐯𝐯𝑛𝑛
1

𝑘𝑘
0
0

] − [
𝟎𝟎
1
0

]                                                                                                          (57) 

𝐳𝐳𝑘𝑘 ≈ (𝟏𝟏 − 𝛿𝛿�̌�𝝃𝑘𝑘
𝑇𝑇 ) [

𝟎𝟎
1
0

] + �̌�𝐓𝑘𝑘
−1 [

𝛿𝛿𝐯𝐯𝑛𝑛
1

𝑘𝑘
0
0

] − [
𝟎𝟎
1
0

] = −𝛿𝛿�̌�𝝃𝑘𝑘
𝑻𝑻 [

𝟎𝟎
1
0

] +

�̌�𝐓𝑘𝑘
−𝟏𝟏 [

𝛿𝛿𝐯𝐯𝑛𝑛
1

𝑘𝑘
0
0

] = − [
𝛿𝛿�̌�𝝃𝑘𝑘

∅× 𝛿𝛿�̌�𝝃𝑘𝑘
𝒗𝒗 𝛿𝛿�̌�𝝃𝑘𝑘

𝒓𝒓

𝟎𝟎 0 0
𝟎𝟎 0 0

] [
𝟎𝟎
1
0

] + �̌�𝐓𝑘𝑘
−𝟏𝟏 [

𝛿𝛿𝐯𝐯𝑛𝑛
1

𝑘𝑘
0
0

] =  𝐇𝐇𝛿𝛿�̌�𝝃𝑻𝑻 +

�̌�𝐓𝑘𝑘
−𝟏𝟏 [

𝛿𝛿𝐯𝐯𝑛𝑛
1

𝑘𝑘
0
0

]                                                                                                                               (58) 
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where 

𝐇𝐇 = [
𝟎𝟎 −𝟏𝟏 𝟎𝟎
𝟎𝟎 0 0
𝟎𝟎 0 0

] (59) 

 
Note that the bottom row of 
Equation (59) is only zeros. 
Therefore, Equation (58) can be 
written as Equation (60). 
𝒛𝒛𝑘𝑘 =  𝐇𝐇𝛿𝛿�̌�𝝃𝑘𝑘𝑇𝑇 +𝐌𝐌𝑘𝑘𝛿𝛿𝐯𝐯𝑛𝑛1𝑘𝑘         (60) 
 
where 𝐇𝐇 =  [𝟎𝟎 −𝟏𝟏 𝟎𝟎]     (61) 
 
The full linearized 𝐇𝐇𝒌𝒌 matrix is 
given as, 
𝐇𝐇𝒌𝒌 =  [𝟎𝟎 𝟎𝟎 −𝟏𝟏 𝟎𝟎 𝟎𝟎](62) 
 

The measurement model 
Jacobian with respect to the 
noise, 𝐌𝐌𝒌𝒌, is written as, 
𝐌𝐌𝑘𝑘 =  �̌�𝐂𝑛𝑛𝑛𝑛T                                     (63) 
 
III. Results and Discussions 

For a foot-mounted inertial 
pedestrian navigation IEKF, the 
full linearised error dynamics for  
𝑆𝑆𝑆𝑆2(3)  with gyro bias and 
accelerometer bias are 
successfully derived and can be 
written as Equation (64) with 
full linearised innovation 𝒛𝒛 
using velocity sensor. That can 
be written as Equation (65). 

𝛿𝛿�̇�𝝃 =

[
 
 
 
 
 −(𝐮𝐮b1 + �̂�𝐛b1)

× 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎
−(𝐮𝐮b2 + �̂�𝐛b2)

× −(𝐮𝐮b1 + �̂�𝐛b1)
× 𝟎𝟎 𝟎𝟎 𝟏𝟏

𝟎𝟎 𝟏𝟏 −(𝐮𝐮b1 + �̂�𝐛b1)
× 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎]

 
 
 
 
 

⏟                                  
𝑨𝑨

𝛿𝛿𝝃𝝃 +

[
 
 
 
 −𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 −𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 −𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 −𝟏𝟏]

 
 
 
 

⏟                
𝐋𝐋

𝛿𝛿𝐰𝐰                                                                                       (64) 

𝒛𝒛 = [
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 −𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]
⏟            

𝑯𝑯

𝛿𝛿𝝃𝝃 + [
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 �̌�𝐂𝑛𝑛𝑛𝑛T 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]
⏟          

𝑴𝑴

𝛿𝛿𝒗𝒗                                      (65) 

 
It is important to note that the 

Jacobians for the process model, 
𝑨𝑨, derived using invariant error 
definitions by Equation (64), 
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rely solely on the measurements 
from rate gyros and 
accelerometers, 𝐮𝐮𝑏𝑏𝟏𝟏  and 𝐮𝐮𝑏𝑏𝟐𝟐 , 
along with the bias estimates. In 
contrast, the Jacobians for the 
Extended Kalman Filter (EKF) 
[10] depend not only on the rate-
gyros and accelerometers 
measurements and bias 
estimates, but also on the 
estimated attitude, �̂�𝐂ab . 
Additionally, the Jacobian for 
the measurement model, 𝑯𝑯 , 
given in Equation (65), is not 
influenced by the attitude 
estimates, unlike the 
measurement model 𝐇𝐇∗ 
discussed in [11]. As a result, the 
IEKF Jacobians have less 
dependence on state estimates 
compared to those from the EKF, 
which gives the IEKF an 
advantage over the MEKF. This 
is because poor state estimates 
can lead to inaccurate Jacobians, 
undermining performance. The 
invariant framework used in the 
IEKF makes it less sensitive to 
initialization errors and provides 
better performance. 
 
IV. Conclusion 

This article revisits the theory 
of Lie Groups and the Invariant 

Extended Kalman Filter (IEKF) 
and applies these concepts to 
design an observer for a foot-
mounted inertial pedestrian 
navigation system. Specifically, 
it employs the IEKF framework 
with elements from a matrix Lie 
Group to derive a design matrix, 
which contains the Jacobians for 
the process model and the 
measurement model. This 
approach aims to create a robust 
and accurate navigation system. 
The derived Jacobians have 
reduced dependence on state 
estimates, as inaccurate 
estimates can lead to faulty 
Jacobians and, ultimately, 
unreliable navigation. The paper 
derives the complete linearized 
error dynamics for 𝑆𝑆𝑆𝑆2(3) , 
considering both gyro bias and 
accelerometer bias, offering a 
comprehensive and precise 
depiction of the system's 
behavior. 

Next, the full linearized 
measurement model for the 
velocity sensor is developed, 
capitalizing on the fact that there 
are times during the stance phase 
when a pedestrian's velocity 
should be theoretically zero. 
This measurement model is 
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demonstrated to be left invariant, 
allowing it to be smoothly 
integrated into the IEKF 
framework. By leveraging this 
left invariance, the IEKF can 
effectively update the system's 
states and correct any sensor 
measurement errors. Ultimately, 
this method should enhance the 
accuracy and robustness of the 
foot-mounted inertial pedestrian 
navigation system. 

Future work will include 
simulation and experimental 
studies on the foot-mounted 
pedestrian navigation system. 
Additional aided measurements, 
like magnetometer readings for 
attitude estimation, particularly 
heading, will be explored and 
tested within the IEKF 
framework, allowing for further 
investigation into the 
consistency and observability of 
the states. 
 
V. Acknowledgement 

The research leading to this 
paper was partly supported by 
Universiti Sains Islam Malaysia. 
 
VI. References 
[1] Potokar, E. R., Norman, K., & 

Mangelson, J. G. “Invariant 

extended kalman filtering for 
underwater navigation”, IEEE 
Robotics and Automation Letters, 
6(3), 5792-5799, 2021. 

[2] Zhang, Z., Zhao, J., Huang, C., & 
Li, L. “Precise and robust sideslip 
angle estimation based on 
INS/GNSS integration using 
invariant extended Kalman filter”, 
Institution of Mechanical 
Engineers, Part D: Journal of 
Automobile Engineering, vol. 237, 
issue 8, 2023. 

[3] De Araujo, P. R. M., Elhabiby, M., 
Givigi, S., & Noureldin, A. “A 
Novel Method for Land Vehicle 
Positioning: Invariant Kalman 
Filters and Deep-Learning-Based 
Radar Speed Estimation”, IEEE 
Transactions on Intelligent 
Vehicles, 8(9), 2023. 

[4] Xu, J., Zhu, P., Zhou, Y., & Ren, 
W. “Distributed Invariant 
Extended Kalman Filter Using Lie 
Groups: Algorithm and 
Experiments”, IEEE Transactions 
on Control Systems Technology, 
31(6), 2023. 

[5] Bolotin, Y. v., & Bragin, A. v. “On 
Some Properties of the Kalman 
Filter in the Pedestrian Navigation 
Problem”, Moscow University 
Mechanics Bulletin, 78(3), 2023. 

[6] Kilic, C., Gutierrez, E., & Gross, J. 
N. “Evaluation of the Benefits of 
Zero Velocity Update in 
Decentralized Extended Kalman 
Filter-Based Cooperative 
Localization Algorithms for 
GNSS-Denied Multi-Robot 
Systems”, Navigation, Journal of 



ISSN: 2180-3811         Vol. 15     No. 1    January - June 2024

The Derivation of a Design Matrix for a Foot-Mounted Inertial Pedestrian Navigation using 
Invariant Observer Approach

139

Journal of Engineering and Technology 

15 
ISSN: 2180-3811 Vol. XX No. X 

 

the Institute of Navigation, 70(4), 
2023. 

[7] Wahlström, J., & Skog, I. “Fifteen 
years of progress at zero velocity: 
A review”, IEEE Sensors 
Journal, 21(2), 1139-1151, 2023. 

[8] Kone, Y., Zhu, N., Renaudin, V., 
& Ortiz, M. “Machine learning-
based zero-velocity detection for 
inertial pedestrian navigation”, 
IEEE Sensors Journal, 20(20), 
12343-12353, 2020. 

[9] Hou, X., & Bergmann, J. 
“Pedestrian dead reckoning with 
wearable sensors: A systematic 
review. IEEE Sensors 
Journal, 21(1), 143-152, 2020. 

[10] El-Sheimy, N., Shin, E.-H., & Niu, 
X. “Kalman Filter Face-Off: 
Extended vs Unscented Kalman 
Filters for Integrated GPS and 
MEMS Inertial”, Inside GNSS, 
48–54, 2006. 

[11] Titterton, D., & Weston, J. L. 
Strapdown inertial navigation 
technology (Vol. 17), IET, 2004. 




