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ABSTRACT 

 

The corneal arcus (CA) is an eye problem frequently faced by some group of people. The 

CA signs indicate the presence of abnormal lipid in blood and can cause  several 

problems such as  blood pressure, diabetes, and hyperlipidemia. This paper presents a 

comparison of classification of the abnormal eye using a neural network. In order to 

extract the image features,  the gray level co-occurrence matrix (GLCM)was used. This 

matrix measures the texture of the image, where the statistical calculation can be used to 

present the image features. The Bayesian Regulation (BR) algorithm has been proposed, 

in which this classifier classifies the obtained results better than previous works by other 

researchers. In this experiment, two classes data-set of the eye image, normal and 

abnormal images CA are used. The results from this BR classifier demonstrate a 

sensitivity of 96.1 % and a specificity of 98.6 %. The overall accuracy of this proposed 

system is 97.6 %. Although this classifier does not obtain 100 % accuracy, however its 

result is  proven to be able to classify the CA images successfully. 

  

KEYWORDS: Corneal arcus; Bayesian regulation; neural network (NN); classifiers; 

confusion matrix; accuracy.   

 

 

1.0 INTRODUCTION 

 

The formation of lipid around the iris is the result of abnormalities caused by excessive 

levels of lipids present in the blood. Because the eye also contains the blood vessels, this 

lipid formation can occur in that area. This condition is known as corneal arcus (CA).  

 

CA presence is normal for most people over the age of 50 years. Conversely, for young 

people such as youth and children who suffer from this condition, they have to undergo a 

blood test to ensure the level of lipids in their blood. Urbano (2001) stated that  CA is 

normal for older people. This statement is also supported by Chua, Mitchell, Wang  

(2002) and Urbano (2001), who suggested  that cardio heart diseases (CHD) as  easy to 

attack  male patients aged below 40 with CA signs. However, for the younger group, CA 

is said to be related to lipid abnormalities and has high risk for getting  CHD. The area 

where  CA frequently appears is around the iris-limbus, with thickness of 0.3 to 1 mm 

(Chua et al., 2002).  
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The researchers (Fernández et al., 2007; Hickey et al., 1970; Ang et al., 2011; Cooke, 

1981; Bersohn et al., 1969; Chen et al., 2009; Halfon et al., 1984; Pomerantz, 1962; 

Navoyan, 2003) have studied about CA, where some of them agreed that the presence of 

CA is manifested with the abnormal lipids in the human circulatory system. 

 

According to Fernández et al.(2007), corneal arcus is associated to coronary heart disease, 

blood pressure, hypercholesterolemia (Macchiaiolo et al. 2014), xanthelasma, alcohol, 

cigarette smoking, diabetes (Bansal et al. 2015; Lesmana et al. 2011), and age. Based on 

this, the presence of CA that is detected during clinical eye examination can be used as 

an indicator that there is lipid increase in the blood. Furthermore, the usage of CA is useful 

as a screening method that is non-invasive and painless. 

 

In this section, several studies related to the automatic diagnosis system to detect 

abnormalities of the cornea, which have been  done by some researchers (Hussein et al. 

2013; Lesmana et al. 2011; Wibawa & Purnomo 2006; Acharya et al. 2007; Acharya, U 

et al. 2006; S.V. Mahesh Kumar 2016) are stated.  Hussein et al. (2013) evaluated the 

potential of iridology that is used to diagnose kidney diseases using the wavelet analysis 

and neural network. Lesmana et al. (2011) studied   diabetes mellitus by detecting the 

abnormalities in pancreatic beta-cells using iris images. Another work detection of 

diabetes mellitus is presented by Wibawa & Purnomo (2006). Yuan et al. (2014), used 

the iris intestinal loop texture information for analysis of the gastrointestinal problem.  

Six texture measures from the grey-level co-occurrence matrix (GLCM) were used to  

support vector machine (SVM) classification. Nor’aini & Rohilah (2013) studied the 

vagina and pelvis region, from the iridology chart based on the iris images. The principal 

component analysis (PCA) and SVM were used for this study. several research studies 

that have been done for detecting the corneal arcus using image processing referring to 

iris region and observation of cornea surface are also found. 

 

Acharya et al. (2006) developed the automatic identification graphic user interface for 

detection of the eye abnormalities.  The fuzzy k-means was used in order to extract the 

features from the eye images. These features are fed to the radial basis function network 

(RBFN) for training and testing. About 150 subjects (patients)who suffer from CA, 

glaucoma, and cataract were classed as having an abnormal eye, while others are having 

normal eyes. This proposed system obtained a specificity of 100 %, a sensitivity of   

90 %, and the overall accuracy is 95 %. In another work by Acharya et al. (2006), 

a comparison between three types of the classification techniques for classifying the 

abnormalities of the eye was demonstrated. These classifiers are artificial neural network, 

fuzzy classifier and neuro-fuzzy classifier. A total of 135 subjects were used for the 

classification of eye diseases. These results produced more than  85 % for sensitivity  and 

specificity was 100 %.  

 

Mahesh Kumar (2016) also discussed the same problem related to CA. The SVM was 

used for diagnosing CA. Statistical features such as mean, standard deviation, entropy, 

skewness and kurtosis were used. The proposed method using OTSU threshold has been 

explained by Ramlee & Ranjit (2009), for detecting CA. The work conducted a study 

based on the threshold values which represent normal and abnormal eyes. This system 

has disadvantages since when a different image intensity is used with variation in 

brightness, the threshold will be affected.  

 



Journal of Engineering and Technology 

 

ISSN: 2180-3811 Vol. 7 No. 2  July – December 2016   128 

 

Based on the findings of  studies conducted by various researchers (Chua et al., 2002; 

Urbano, 2001; Fernández et al., 2007; Hickey et al., 1970; Ang et al., 2011; Cooke, 1981; 

Bersohn et al., 1969; Chen et al., 2009; Halfon et al., 1984; Pomerantz , 1962; Navoyan, 

2003), whom found that there is a correlation between corneal arcus and hyperlipidemia. 

Therefore, these problems can be studied from the point of establishing a system to 

classify from the normal people.  

 

In this paper, a classification of normal and abnormal images CA is presented using the 

BR classifier. The BR classification algorithm is proposed based on the results shown 

which are quite good compared to the method previously conducted by other researchers. 

 

2.0 METHODOLOGY  

 

The proposed framework for this classification process is shown in Figure 1. Based on 

the above diagram, this framework consists of four stages. The first stage is the input 

image, consisting of normal eye image and the eye image with CA. The second stage is 

to extract image features using GLCM. The third stage is BR neural network to train and 

test the data-set. This neural network (NN) system consists of three cluster nodes: the 

input, hidden and output. The final stage is to decide whether the eye images belong to 

normal or abnormal categories. 

 

Figure 1. The framework for the proposed methodology  

 

2.1       Database 

 

For this experiment, two sets of data set samples were prepared, which are the normal and 

abnormal eyes. The data set of the abnormal eyes contains 50 samples while the data set 

of the normal eyes contains 75 samples. The normal samples are  obtained from UBARIS 

(Proenc & Alexandre, 2006), CASIA (CASIA, 2003), and IITD (Kumar, 2008). 

Meanwhile, for CA eye, the images were collected from public resources (Andrew Lee, 

2005; Harleen et al., 2014; Keepyourhearthealthy,  2010; James, 2002) and other medical 

and iridology websites.  Acharya et al. (2007) collected  50 samples while 135 samples 

were used by Acharya et al. (2006).  Mahesh Kumar (2016) used 100 images acquired 

from both eyes of 50 patients as a base for their confusion matrix.  
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2.2      Statistical Features  

 

For feature extraction from the analyzed images, the GLCM matrix was used as suggested 

by Haralick et al. (1973) where  at least 14 textural features are proposed which can be 

extracted from this GLCM matrix. 

 

In this study, only five of the fourteen statistical texture features are used, in which these 

minimum features can reduce operating algorithm. The equation of these statistical 

features is given as follows: 

 

The contrast (𝑓1) and the local variation can be obtained by calculating the GLCM matrix 

of Equation 1: 

 

𝑓1 = ∑|𝑖 − 𝑗|2 𝑝(𝑖, 𝑗)

𝑖,𝑗

 
      (1) 

 

The correlation (𝑓2) measures the amount of joint probability occurrence of the specified 

pixel pairs in these images. 

 

𝑓2 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑖)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗

 
(2) 

  

The energy (𝑓3) provides the amount of squared elements contained in the GLCM matrix, 

also known as the angular second moment or uniformity.      

     

𝑓3 = ∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗

 
(3) 

 

The homogeneity (𝑓4) measures the nearness of the distribution of components in the 

GLCM to the GLCM diagonal. 

 

𝑓4 = ∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 
 (4) 

 

The entropy (𝑓5) was introduced by Shannon (1948). In the image processing, the entropy 

is used to calculate the statistical attributes to determine the image texture.  

 

𝑓5 = − ∑ 𝑝𝑘 log2(𝑝𝑘)

𝑀−1

𝑘=0

 

(5) 

 

The µ is the GLCM mean as given by Equation (6) where Pij is the element in i and j with 

normalized symmetrical value contained in the GLCM matrix. M is the number of gray 

levels in the image. 
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𝜇 = − ∑ 𝑖𝑃𝑖𝑗

𝑀−1

𝑖,𝑗=0

 

(6) 

 

Meanwhile, σ2 is the variance of the intensities of all reference pixels in GLCM, as in 

Equation (7): 

 

σ2 = ∑ 𝑃𝑖𝑗

𝑁−1

𝑖,𝑗=0

(𝑖 − 𝜇)2 

(7) 

 

 

2.3       Bayesian Regulation Back-Propagation Algorithm 
 

The over-fitting problems often interfere in the training process of the neural network. 

For this reason, Foresee & Hagan (1997) implemented BR within the framework of the 

Levenberg-Marquardt algorithm to solve this problem. Yue et al. (2011) described the 

regularized training objective function, which is denoted as F(ω) as written in  

Equation (8). 

 

𝐹(𝜔) = 𝛼𝐸𝜔 + 𝛽𝐸𝐷    (8) 

 

The 𝛼 and 𝛽 as in Equation (8), are the parameters of the objective function, while 𝐸𝜔 

and 𝐸𝐷 are the network weights and network sum error respectively. In BR framework, 

the network weights are defined as the random variables. These weights of network and 

training set are assumed as the Gaussian distribution. The factors α and β, are obtained 

from Bayes' theorem. Equation (9) shows the variables A and B which are defined from 

Bayes' theorem that describe posterior and prior probability variables (Li & Shi, 2012).  

 

𝑃(𝐴|𝐵)  =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

(9) 

 

Referring to Equation (9), the P(A|B) is the conditional of A and B of posterior probability 

and conversely for P(B|A). Meanwhile, the P(A) and P(B) is the prior of probability of 

event A and event B. Equation (10) is used to minimize the 𝐹(𝜔) from Equation (8), in 

order to optimize the weight space. The variables 𝛼 and 𝛽 in Equation (10) are the factors 

that need to be optimized. 

 

𝑃(𝛼, 𝛽|𝐷, 𝑀)  =
𝑃(𝐷|𝛼, 𝐵, 𝑀)𝑃(𝛼, 𝛽|𝑀)

𝑃(𝐷|𝑀)
 

(10) 

 

Referring to Equation (10), variable D is the distribution of weight, while the M is the 

architecture of NN. Thus, 𝑃(𝐷|𝑀) is the factor of normalization. The P(α, β│M) is the 

regularization parameters and P(D│α, B, M) is the function likelihood of D with respect 

to α, B, M. 

 

The BR is used as shown in Figure 2 for classification of the normal eye and the  abnormal 

eye. A two-layer-feed-forward network, with log-Sigmoid-transfer function at hidden 

layer and  Soft max transfer function at output neurons, are used in this BR. After several 
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tests, it was decided to use 10 neurons for each training. This NN is designed using five 

input neurons, ten hidden neurons, and two output neurons. The input to the neural 

network is derived from the image extraction features. These features include contrast, 

correlation, energy and the homogeneity and entropy. The images used for this neural 

network are divided into three sets of data: training data, validation data, and test data. 

 

 

 
 

Figure 2 The two layers architecture of the BR 

 

 

2.4       Evaluation of Classifier Performance  
 

To evaluate the output performance of this model,  the confusion matrix (Table 1) and the 

statistical calculation from the confusion matrix attributes were used. From these 

attributes, some statistical figures for showing the algorithm performance such as the 

specificity, sensitivity, and accuracy can be calculated.  

 

Congalton (1991) called the confusion matrix as error matrix or contingency table. The 

author demonstrated the usage of this error matrix for the classification system, the 

sampling scheme, the sample size, spatial autocorrelation, and the assessment techniques.  

 

In the confusion matrix, there are four different situations to represent the data. The 

elements of true-positive (TP) in Table 1 represent the number of samples of correct 

classification based on the classifier as a  positive (abnormal eye). 

 

Table 1. The confusion matrix distribution elements 

 

 Reference 

Predicted Class 

I 

Class 

II 

Class I TP FP 

Class II FN TN 
TP=True positive, FP=False positive, FN=False negative, TN=True negative 

 

Meanwhile, the elements of true-negative (TN) represent the number of samples in the 

classified correctly by the classifier as a negative (normal eye). The confusion matrix will 

gain 100% accuracy if both TP and TN detect correctly for each class.  

 

The sensitivity (Se) is a measure of the positive elements that are correctly identified by 

the algorithm (e.g. the percentage of the eye samples which are correctly identified as 

having the condition of the disease).  The sensitivity calculation is given by  

Equation (11). 
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𝑆𝑒 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(11) 

 

The specificity (Sp) is a measure of the percentage of the negative rate, which is opposite 

to sensitivity (e.g. the percentage of the eye samples which are correctly identified as not 

having the disease) and given by: 

 

𝑆𝑝 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

(12) 

 

The accuracy (ACC) is a measure of the positive and negative classes that are correctly 

identified by the algorithm. The calculation is given by Equation (13). 

 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

 (13) 

 

According to Powers (2007), the precision (PPV) refers to the proportion of the predicted 

positive cases that are correctly real positives. 

 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(14) 

 
 

3.0  RESULTS AND DISCUSSION 
 

This section presents the results obtained from the experiments conducted and discussion 

on the classifier performance. Figure 3 shows the receiver operating characteristic (ROC) 

graph used to present the performance of this classifier system.  Two classes are  used to 

classify the eye images, which are the Class 1 and Class 2 for normal eye (controlled) and 

abnormal eye, respectively. The data of the true positive rate (TPR) against the false 

positive rate (FPR) are plotted and shown in Figure 3. The percentage of positive 

predictive value (PPV) is 98 %, and the negative predictive value (NPV) is 97.33 %.  
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Figure 3. Receiver operating characteristic for BR. 

 

 

Table 2 presents the comparison between the different methods used to classify the 

abnormal eye. The highlighted and bold font refer to a proposed system using BR 

classifier which shows the improvement of overall accuracy achieved. 

 

Table 2. Comparison of method used to classify the abnormal eye  

 

Method 
Se 

(%) 

Sp 

(%) 

Ppv 

(%) 

Npv 

(%) 

Acc 

(%) 

ANN (Acharya, U et al. 2006)  85.00 100 100 80.00 90.74 

RBF (Acharya et al. 2007) 90.00 100 100 91.00 95.00 

FUZZY (Acharya, U et al. 2006) 89.00 100 100 83.33 92.73 

ANFIS (Acharya, U et al. 2006) 89.0 100 100 83.33 92.73 

SVM (S.V. Mahesh Kumar 2016)  94.00 98.00 97.91 94.23 96.00 

Proposed BR 96.10 98.60 98.00 97.33 96.70 
Se = sensitivity, Sp = specificity, Ppv = positive predictive value,  

Npv = negative predictive value,  Acc = Accuracy. 

 

Table 3 shows the statistical analysis using Kruskal-Wallis (KW) ANOVA table for all 

features proposed in this experiment. It can be observed that the statistical features of the 

normal and abnormal eye consist of different data sets. The P-values in the last column 

of Table 3 are compared to the Chi-square values for showing the features that are 

significant or not. From this table, all texture features indicated reject the null hypothesis 

that the features come from the same distribution at a 5 % significance level. 
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Table 3.  Kruskal-Wallis ANOVA Table 

Features Source SS df MS Chi-sq P>Chi-sq 

1 

 

 

Columns 6377.7826 1 6377.7826 8.9451 2.7822E-3 

Error 58504.7174 90 650.0524   
Total 64882.5 91    

2 

 

 

Columns 2739.1739 1 2739.1739 3.8418 4.999E-02 

Error 62143.3261 90 690.4814   
Total 64882.5 91    

3 

 

 

Columns 18624.8 1 18624.8 26.12 3.205E-07 

Error 46257.2 90 514   
Total 64882 91    

4 

 

 

Columns 12029.3913 1 12029.391 16.872 4.00E-05 

Error 52853.1087 90 587.2568   
Total 64882.5 91    

5 

 

 

Columns 3669.1413 1 3669.1413 5.1589 2.3128E-2 

Error 61052.3587 90 678.3595   
Total 64721.5 91    

P =probability 

 

The evaluation of this BR using confusion matrix is shown in Figure 4 where this binary 

classification is used to get the classification outcome, either positive or negative result. 

This 2-by-2 matrix comprises of C (m, n), where m and n are the row and column, 

respectively. For example, in Figure 4, the C (1, 1) for training confusion matrix is 

represented by the value of 44 samples of the images. 

This equals to 41.5 % of the image detected as a correct class. Other statistical values that 

can be obtained from this training confusion matrix are: accuracy (98.1 %), sensitivity 

(95.7 %), and specificity (100 %). For test data, this classifier obtained the following 

values, TP (26.3 %), TN (68.4 %), FP (5.3 %), and FN (0 %). Thus, this classifier 

demonstrated the results (test data) as follow: the accuracy (94.7 %), sensitivity (100 %), 

and specificity (92.9 %). The overall results obtained from this BR classifier are given by 

these values: the accuracy (97.6 %), sensitivity (96.1 %), and specificity (98.6 %). 
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Figure 4. Confusion matrix for BR 

 

 

4.0 CONCLUSION 

 

In this paper, the classification of CA images using the BR classifier is presented. The 

image features are extracted using the GLCM matrix properties as the inputs to the BR 

classifier. These image features are divided by the ratio of 70% for training, 15% for 

testing, and 15% for validation for the process of classification. Two layers BR model is 

used for these processes of learning, training, and validation. The network is designed 

with five inputs, ten hidden neurons, and two output neurons, where this classifier 

demonstrates a great performance of the classification accuracy (96.7%). Based on these 

experiments, the accuracy of this algorithm is considered is influenced by the quality of 

the image, number of images, and the image features used as input classifier. It is 

proposed that future work should consider other types of eye diseases and identify the 

best way to get the image characteristics used in the neural network. 
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