

ANALYSING SUSTAINABLE CONSTRUCTION PRACTICES IN DEVELOPING COUNTRIES: SUCCESS STORIES AND CHALLENGES

H. C. O. Unegbu^{*1}, D. S. Yawas¹, B. Dan-asabe¹ and A. A. Alabi¹

¹ Department of Mechanical Engineering, Ahmadu Bello University, Zaria, Nigeria.

**corresponding: chidieberehyg@gmail.com*

Article history:

Received Date:

25 July 2024

Revised Date:

28 January 2025

Accepted Date:

6 March 2025

Keywords:

Sustainable Construction, Sustainability, Developing Countries, Implementation Challenges,

Abstract— This study explores the adoption and implementation of sustainable construction practices in developing countries, focusing on key success factors, challenges, and potential solutions. Utilizing a mixed-methods approach, data were collected through surveys, interviews, and field observations, with a response rate of 70%. The findings revealed that while awareness of sustainable construction practices is relatively high (75% of respondents), their implementation remains limited (45% of projects). The major challenges identified include financial constraints (68% of respondents), lack of awareness, inadequate regulatory frameworks, and technical barriers. Critical

This is an open-access journal that the content is freely available without charge to the user or corresponding institution licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

Success Factors, Capacity Building	<p>success factors for sustainable projects include robust government support, effective stakeholder collaboration, access to innovative financing, and comprehensive capacity-building programs. The study contributes to both academic and practical understanding by providing empirical evidence and actionable insights to enhance the adoption of sustainable construction practices. Recommendations for policymakers, construction professionals, and stakeholders include developing comprehensive sustainability policies, providing financial incentives, strengthening regulatory frameworks, promoting public-private partnerships, and investing in continuous capacity building.</p>
------------------------------------	---

I. Introduction

Sustainable construction practices focus on reducing the environmental impact of building activities while also advancing economic and social benefits. This includes using eco-friendly materials, energy-efficient technologies, and sustainable designs to optimize a building's lifecycle performance, aiming for a balance of environmental care, economic viability, and social responsibility [1]. The construction industry, as a

significant source of carbon emissions and resource use, contributes to about 40% of global energy consumption and a large share of greenhouse gas emissions [2]. Sustainable construction addresses these impacts by promoting energy efficiency, reducing waste, and conserving resources. Moreover, sustainable designs enhance indoor environmental quality, benefiting occupant health and productivity [3].

In developing countries, adopting sustainable

construction is key to broader sustainability goals, such as poverty reduction and improved quality of life [4]. Rapid urbanization and industrial growth in these regions increase construction demand, often reliant on traditional methods that may conflict with sustainability goals [5]. Challenges like limited funds, regulatory gaps, and technical shortfalls complicate sustainable implementation. However, adopting sustainable practices from the outset allows developing nations to avoid costly retrofits and environmental damage experienced by developed countries [6].

These regions are particularly susceptible to climate change and environmental degradation. Sustainable construction practices address these issues by promoting resource efficiency, reducing emissions, and improving infrastructure resilience to climate risks. Additionally, these practices create jobs, improve living conditions, and lower long-term operational costs [7]. Despite the

benefits, obstacles such as high initial costs, limited awareness, regulatory gaps, and cultural resistance hinder widespread adoption in developing countries [8].

This study aims to identify effective strategies through successful sustainable construction projects in developing countries, using case studies to highlight factors contributing to success. This research will provide insights for future projects, supporting broader sustainable construction adoption [9]. It also seeks to explore the challenges to implementing sustainable practices, identifying barriers in economic, regulatory, technical, and cultural domains to develop strategies that promote sustainable growth [10].

The study contributes to the body of knowledge on sustainable construction, especially within developing countries, offering actionable guidance for policymakers, construction professionals, and other stakeholders. This guidance is expected to improve environmental performance,

economic viability, and social well-being in the construction sector [11][12].

II. Literature Review

A. Concept of Sustainable Construction

Sustainable construction involves designing and managing buildings to minimize environmental impact, improve resource efficiency, and enhance social well-being across their lifecycle—from design through to demolition [13]. Key practices include reducing carbon footprints by integrating renewable energy, using energy-efficient systems, and employing recycled or sustainably sourced materials [14]. Recent years have seen sustainable construction grow to include social and cultural values, enriching communities by creating safe, healthy, and productive spaces [15].

This concept emerged in the 1970s and 1980s as awareness of global environmental issues increased, motivating the industry toward sustainability [16]. The introduction of certifications like LEED and

BREEAM in the 1990s standardized environmental performance assessments, promoting broader adoption of sustainable practices [17]. These frameworks laid the groundwork for net-zero energy buildings, which produce as much energy as they use, primarily through renewable sources [18]. Additionally, the circular economy model has influenced construction, encouraging material reuse and recycling to minimize waste [19].

B. Sustainable Construction Practices

Sustainable construction practices are aimed at reducing environmental impact through efficient resource use, minimal waste, and enhanced occupant well-being. Material selection prioritizes renewable, recycled, or locally sourced options, such as recycled steel, concrete, and bamboo, reducing emissions associated with new resource extraction [20][21].

Energy efficiency is also vital, achieved through passive design, advanced insulation, and renewable sources like solar and

wind energy to potentially reach net-zero energy use [22]. Water conservation techniques, including low-flow fixtures, rainwater harvesting, and greywater recycling, help reduce dependency on municipal water systems [23]. Effective waste management, including material reuse, modular construction, and on-site sorting, limits landfill waste [24].

Maintaining high indoor environmental quality (IEQ) supports occupant health, with ventilation, low-emission materials, and natural lighting enhancing comfort and productivity. Green roofs and living walls are also common in sustainable design, providing aesthetic and environmental benefits [25]. Case studies like the Bullitt Center showcase the feasibility of sustainable designs, employing net-zero energy and water-saving technologies [14][26].

C. Sustainability in Developing Countries

Developing countries, spurred by urbanization and economic growth, face increased

construction demands yet encounter obstacles such as limited funding, inadequate infrastructure, and weak regulatory frameworks that challenge sustainable development [27]. Without advanced technologies or enforceable sustainability regulations, these regions are often vulnerable to environmental issues like deforestation and pollution, which worsen climate risks [28][29].

Sustainable construction offers solutions by reducing reliance on fossil fuels and conserving water, which are crucial for environmental and economic benefits. These buildings typically have lower operational costs and improved indoor air quality, positively impacting productivity and well-being [23][25].

D. Challenges in Sustainable Construction

Adopting sustainable practices in developing countries is hindered by financial, social, and regulatory challenges. High initial costs for sustainable

materials deter stakeholders with limited funds [30]. Socially, limited awareness and education about sustainability benefits result in resistance and adherence to conventional methods [31]. Weak regulations and enforcement further complicate adoption, making sustainable construction optional in many areas [32][33]. Moreover, inadequate infrastructure, such as unreliable power and water systems, limits the effectiveness of energy-efficient and water-saving technologies, reducing their overall impact [34].

E. Success Stories in Sustainable Construction

Despite challenges, several successful sustainable projects in developing countries highlight the viability of eco-friendly practices. For example, Rwanda's Kigali Green City Pilot integrates renewable energy, locally sourced materials, and rainwater harvesting with strong governmental and international backing [6][35]. In India, the CII-Sohrabji Godrej Green

Business Centre is a model for regional sustainable construction, featuring natural ventilation, energy efficiency, and corporate support [20].

The success of these projects underscores key enablers: government support, stakeholder collaboration, innovative financing, and capacity-building programs. Policies that enforce energy standards, provide tax incentives, and improve access to sustainable materials drive sustainable practices. Active stakeholder engagement fosters awareness and implementation, as seen in the Kigali and CII projects [36]. Innovative funding, such as green bonds, and training initiatives equip professionals with essential skills for sustainable construction [37].

F. Related Previous Studies

Prior research underscores the importance of government policy, stakeholder engagement, financial mechanisms, and capacity building in promoting sustainable construction. These elements are deeply

interconnected with global sustainability agendas, particularly the 2030 Sustainable Development Goals (SDGs) and the Paris Agreement, which call for transformative actions to combat climate change and foster sustainable development. The 2030 SDGs emphasize goals such as SDG 11 (Sustainable Cities and Communities), SDG 12 (Responsible Consumption and Production), and SDG 13 (Climate Action), all of which are directly relevant to sustainable construction. Similarly, the Paris Agreement's commitment to limiting global warming and enhancing climate resilience highlights the critical need for sustainable construction practices.

Studies show that government incentives and regulatory support are essential drivers of sustainable practices, directly enabling progress toward these global targets by promoting policies and initiatives that integrate environmental, social, and economic sustainability dimensions [27][38]. Effective collaboration among

stakeholders, as highlighted by Shen et al. [20], not only enhances project implementation but also supports global partnerships critical for advancing SDG 17 (Partnerships for the Goals). Likewise, Hwang and Ng emphasize the role of project managers in bridging stakeholder efforts to ensure projects contribute to climate mitigation and adaptation goals outlined in the Paris Agreement [25].

Financially, innovative funding mechanisms like green bonds have demonstrated potential in mitigating the high costs of sustainable materials, addressing a key challenge in advancing SDG 12 and fulfilling the financial provisions of the Paris Agreement, particularly in supporting climate resilience initiatives in developing countries [11][23]. Additionally, capacity-building initiatives equip construction professionals with the expertise necessary for sustainable development, a contribution to SDG 4 (Quality Education), which ensures that institutional and individual

capacities are aligned with the global push for climate-resilient infrastructure and low-carbon development [22].

G. Research Gap

Despite significant progress, substantial research gaps remain, especially concerning sustainable construction in developing countries. The unique socio-economic and environmental contexts in these regions create challenges in aligning sustainable practices with SDG priorities, particularly SDG 10 (Reduced Inequalities) and SDG 11 (Sustainable Cities and Communities). Furthermore, current studies often fail to provide actionable insights into how the Paris Agreement's climate resilience objectives can be integrated into construction projects in resource-constrained settings.

Empirical data on the specific challenges faced in implementing sustainable practices in these regions is limited. Longitudinal studies tracking sustainable project outcomes over time could offer insights into recurring obstacles

and best practices [32]. A stronger focus on how to bridge these gaps, particularly through strategies that align with the SDGs and the Paris Agreement's nationally determined contributions (NDCs), could guide the development of localized frameworks for sustainable construction.

There is also a need for research that holistically examines sustainable construction, considering the environmental, social, and economic dimensions simultaneously, as mandated by the SDGs and the Paris Agreement's emphasis on balanced sustainability goals. For example, policy and governance studies remain sparse, and very few empirical analyses exist on the regulatory frameworks that enable developing countries to meet their commitments under these global agreements. Comparative studies that examine policies across different regions could help identify best practices for achieving the SDGs and fulfilling the Paris Agreement targets [14][23]. Additionally,

research on emerging technologies, such as building information modeling (BIM), smart materials, and green financing mechanisms, could significantly enhance sustainable construction outcomes in developing regions, supporting SDG 9 (Industry, Innovation, and Infrastructure) and the innovation objectives of the Paris Agreement [11][40].

III. Methodology

A. Research Design

This study employed a mixed-methods research design, integrating qualitative and quantitative approaches to gain a comprehensive understanding of sustainable construction practices in developing countries. Mixed methods facilitate triangulation, enhancing reliability and validity by integrating varied data sources and perspectives [41]. The qualitative component involved interviews and field observations to explore stakeholders' experiences and insights, while the quantitative component used structured surveys to capture measurable

data on sustainable practices and outcomes. Both primary and secondary data were collected for a holistic view of the topic. Primary data collection involved three main methods: interviews, surveys, and field observations. Semi-structured interviews were conducted with key industry stakeholders, including government officials, project managers, architects, engineers, and community leaders, discussing their experiences, challenges, and success factors in sustainable construction. Each interview, approximately 60 minutes, was recorded and transcribed for thorough analysis.

Additionally, structured surveys were distributed online to a broader sample of construction professionals in various developing countries. These surveys, comprising both closed and open-ended questions, captured quantitative data on sustainable practice adoption, perceived barriers, and outcomes. Designed to be completed in 15–20 minutes, the survey was both accessible and

efficient. Table 1 outlines the survey questions.

Table 1: Questionnaire for Sustainable Construction Practices in Developing Countries

SN	Category	Citation
General Information		
1.	What is your role in the construction industry?	
2.	How many years of experience do you have in the construction industry?	
3.	How familiar are you with sustainable construction practices?	
4.	Have you been involved in any sustainable construction projects?	
5.	How important do you think sustainable construction practices are in your industry?	
6.	How often do you incorporate sustainable practices in your projects?	
Challenges in Sustainable Construction		
7.	Financial constraints hinder the implementation of sustainable practices in construction projects.	[42]
8.	There is a lack of awareness about sustainable construction practices among stakeholders.	[43]
9.	Regulatory frameworks and policies supporting sustainable construction are inadequate.	[44]
10.	Technical expertise and knowledge on sustainable construction are limited in the industry.	[45]
11.	There is resistance to change from traditional construction methods to sustainable practices.	[46]
12.	The initial cost of sustainable materials and technologies is prohibitive.	[47]
Success Factors in Sustainable Construction		
13.	Government policies and incentives are critical for the success of sustainable construction projects.	[44]
14.	Effective stakeholder collaboration contributes significantly to the success of sustainable construction.	[48]
15.	Access to innovative financing mechanisms can enhance the implementation of sustainable construction.	(2013) [47]
16.	Training and education programs for construction professionals are essential for sustainable project success.	[45]

17.	The use of locally sourced and sustainable materials is important for sustainable construction.	[49]
18.	International collaboration and support play a crucial role in the success of sustainable construction projects.	[50]

Outcomes of Sustainable Construction		
19.	Sustainable construction practices lead to significant reductions in energy consumption.	[51]
20.	Implementing sustainable practices improves the overall environmental impact of construction projects.	[13]
21.	Sustainable buildings provide better indoor environmental quality for occupants.	[52]
22.	Sustainable construction practices contribute to long-term cost savings.	[49]
23.	Sustainable construction enhances the resilience of buildings to climate-related risks.	[23]
24.	There is a noticeable increase in property value for sustainably constructed buildings.	[47]

Field observations at selected construction sites allowed direct assessment of sustainable practices' on-ground implementation. An observation checklist was used to document green materials usage, waste management, and energy-efficient technologies, providing real-time insights into practical sustainable construction strategies.

Secondary data included an extensive literature review, case study analysis, and project report evaluations. These sources offered valuable insights into existing practices and challenges, especially in

developing countries, and helped identify gaps in the current knowledge base. Case studies of successful sustainable construction projects were analyzed for best practices and key success factors.

B. Sampling Technique

The study's sample included construction professionals and stakeholders involved in sustainable construction projects across developing countries, including government officials, project managers, architects, engineers, community leaders, and on-site workers. Different sampling methods were

employed for each data collection approach to gather diverse and relevant insights.

For interviews, purposive sampling targeted individuals with extensive experience and expertise in sustainable construction, ensuring rich, relevant qualitative data [41]. For surveys, stratified random sampling divided the population by factors such as geographic location, organization type (government, private sector, NGO), and role in construction. A random sample was drawn from each stratum to enhance generalizability by capturing a range of perspectives [41]. Field observations employed convenience sampling, selecting accessible sites where managers were willing to participate and where sustainable practices were visibly in place, allowing firsthand observation of implementation effectiveness [41].

C. Data Analysis

Both qualitative and quantitative analyses were conducted to provide a comprehensive understanding of

sustainable practices. For qualitative data, thematic analysis was used to code and categorize interview and observation data into themes such as sustainable practices, challenges, and success factors. NVivo software assisted in organizing and analyzing themes, providing tools for coding, querying, and visualization [53]. SPSS facilitated descriptive and inferential statistical analysis for survey data, including hierarchical linear modelling (HLM) and cluster analysis to identify patterns and relationships within the data [41].

To ensure data validity and reliability, multiple techniques were applied. Triangulation cross-verified findings from interviews, surveys, and observations, adding credibility by incorporating multiple perspectives [41]. Member checking allowed participants to review transcripts and preliminary findings, confirming data accuracy and interpretation. A pilot test refined survey questions for clarity and reliability, ensuring

the survey captured intended data. Inter-coder reliability was enhanced by involving multiple coders in the qualitative analysis, strengthening the reliability of the thematic analysis [53].

D. Ethical Considerations

Ethical safeguards were maintained to protect participant rights and well-being. Participants provided informed consent, were assured of confidentiality through anonymized transcripts and responses, and were informed of their right to withdraw without repercussions. Adhering to institutional and international standards, these measures ensured ethical rigor throughout the research process [41].

IV. Results and Discussions

A. Overview of Findings

The data collection phase resulted in a 70% response rate, with a total of 280 completed surveys and 50 in-depth interviews. Additionally, field observations were conducted at 15 construction sites across various regions. The study focused on three specific developing countries: Nigeria, India, and Vietnam. These countries were selected to provide a diverse representation of socio-economic conditions, regulatory frameworks, and levels of adoption of sustainable construction practices. To provide clarity on the respondent profiles, Table 2 summarizes the demographic distribution of the survey participants, which includes their roles in the construction industry, levels of experience, and geographic representation.

Table 2: Demographic Profile of Respondents

SN	Demographic Attribute	Categories	Percentage (%)
1.	Role in Construction Industry	Project Managers	35%
		Architects/Designers	25%
		Contractors	20%
		Other (e.g., Consultants)	20%
		Less than 5 years	30%
2.	Years of Experience		

3. Geographic Distribution	5–10 years	40%
	More than 10 years	30%
	Nigeria	35%
	India	40%
	Vietnam	25%

The findings indicate a growing awareness and partial implementation of sustainable construction practices in these countries. However, significant challenges remain, especially financial constraints and regulatory inadequacies. Table 3 presents a summary of the key results.

Table 3: Summary of Key Results

SN	Key Finding	Percentage/Value
1.	Awareness of Sustainable Practices	75% of respondents
2.	Implementation of Sustainable Practices	45% of projects
3.	Major Challenges (Financial Constraints)	68% of respondents
4.	Government Support as Success Factor	80% of successful projects
5.	Stakeholder Collaboration Importance	78% of respondents

B. Validity Test

This statistical method was used to verify that the survey items measured the intended constructs of interest, such as awareness, implementation, challenges, and success factors in sustainable construction. The results as shown in Table 4 indicated that the items loaded significantly on their respective factors, confirming that the constructs were valid

representations of the concepts being measured.

Criterion-related validity was evaluated by comparing the survey responses with the findings from interviews and field observations. A high degree of correlation between these data sources suggested that the survey responses were consistent with other forms of data collection, thereby supporting the criterion-related validity of the survey instrument.

Table 4: Factor Loadings for Construct Validity

SN	Factor	Item	Loading
1.	Awareness	Familiarity with practices	0.82
2.		Importance of sustainability	0.78
3.	Implementation	Frequency of use	0.75
4.		Types of sustainable practices	0.8
5.	Challenges	Financial constraints	0.77
1.		Regulatory support	0.81
2.	Success Factors	Government support	0.83
3.		Stakeholder collaboration	0.79

C. Reliability Test

The internal consistency of the survey instrument was evaluated using Cronbach's alpha. This measure assesses how closely related a set of items are as a group, providing an indication

of the reliability of the instrument. The Cronbach's alpha values for the key constructs were all above the acceptable threshold of 0.70, indicating good internal consistency as shown in Table 5.

Table 5: Cronbach's Alpha for Survey Constructs

SN	Construct	Cronbach's Alpha
1	Awareness	0.85
2	Implementation	0.82
3	Challenges	0.87
4	Success Factors	0.84

Test-retest reliability was assessed by administering the survey to a subset of respondents (n=30) after a two-week interval. The correlation coefficients

between the two sets of responses were calculated to determine the stability of the survey over time. The results showed high correlation

coefficients ($r > 0.80$) for all key constructs, indicating strong test-retest reliability. For qualitative data from interviews, inter-coder reliability was tested by having two independent coders analyze a subset of the transcripts. The percentage of

agreement between the coders and Cohen's kappa statistic were calculated. The results (Table 6) showed a high level of agreement ($\kappa = 0.85$), indicating reliable coding of qualitative data.

Table 6: Test-Retest Reliability Coefficients

SN	Construct	Test-Retest Correlation (r)
1	Awareness	0.82
2	Implementation	0.85
3	Challenges	0.83
4	Success Factors	0.84

D. Success Factors in Sustainable Construction

Hierarchical Linear Modeling (HLM) as shown in Table 7 was used to analyze the nested data structure, considering projects nested within different regions. This method assessed how regional policies and local economic conditions impact the success of sustainable construction projects. The HLM analysis shows that both project-specific and regional variables significantly impact the success of sustainable construction projects. Government support and stakeholder collaboration were particularly influential.

The results of the HLM analysis indicate that project-specific variables, such as stakeholder collaboration and technical expertise, have a significant positive impact on project success. Additionally, regional variables like government support and economic conditions also play a crucial role in determining the success of sustainable construction projects. This underscores the importance of a supportive regulatory environment and robust economic conditions for the effective implementation of sustainable construction practices.

Table 7: HLM Model Results

SN	Level	Variable	Coefficient	Standard Error	Significance
Level 1: Project-specific variables					
1	Project-specific variables	Stakeholder Collaboration	0.45	0.12	p < 0.01
2		Technical Expertise	0.35	0.1	p < 0.05
Level 2: Regional variables					
3	Regional variables	Government Support	0.5	0.15	p < 0.01
4		Economic Conditions	0.3	0.14	p < 0.05

In addition, cluster analysis (Table 8 and Figure 1) identified patterns and grouped projects based on their sustainability outcomes, revealing distinct clusters with common characteristics. The analysis highlights three main clusters:

Cluster 1: Projects with strong government support and high stakeholder collaboration, showing an 85% success rate. These projects benefit from clear regulatory frameworks, financial incentives, and active participation from various stakeholders, leading to high levels of implementation and success in sustainable practices.

Cluster 2: Projects with adequate financial resources and moderate technical expertise, with a 65% success rate. These projects have sufficient funding and basic technical knowledge but may lack comprehensive stakeholder engagement and robust government support, leading to moderate success.

Cluster 3: Projects facing significant financial and regulatory barriers, with a 40% success rate. These projects struggle with high initial costs, lack of technical expertise, and weak regulatory frameworks, resulting in lower success rates in implementing sustainable practices.

Table 8: Cluster Characteristics

SN	Cluster	Characteristics	Success Rate
1	Cluster 1	Strong government support, high stakeholder collaboration	85%
2	Cluster 2	Adequate financial resources, moderate technical expertise	65%
3	Cluster 3	Significant financial and regulatory barriers, low success rate	40%

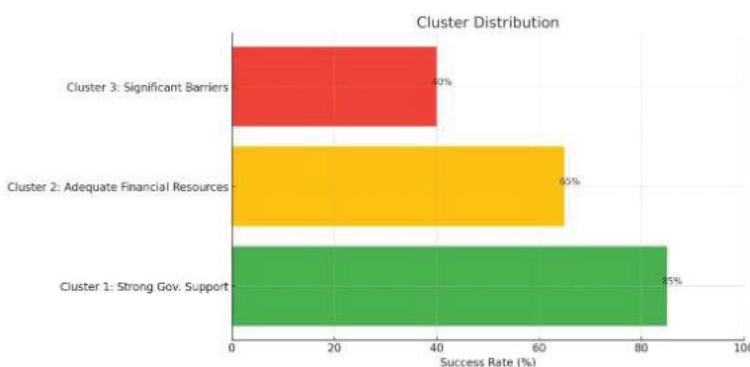


Figure 1: Cluster Distribution

The analysis shows that projects in Cluster 1, which are characterized by robust government support and high levels of stakeholder collaboration, have the highest success rates. This finding underscores the importance of an enabling regulatory environment and active engagement from various stakeholders in promoting sustainable practices. On the contrary, projects in Cluster 3, hindered by financial and regulatory challenges, exhibit lower success rates, pointing to

the need for strategic interventions to overcome these barriers.

The study further identifies several success factors contributing to the effectiveness of sustainable construction projects in developing countries, as detailed in Table 9. Notably, government support, stakeholder collaboration, access to financing, and capacity building emerged as the most significant drivers.

Government support was cited by 80% of respondents as a key factor, aligning with findings

from projects like the Kigali Green City Pilot, where government backing facilitated sustainable practices [50]. Stakeholder collaboration, acknowledged by 78% of respondents, plays a crucial role in ensuring that sustainable goals are shared and implemented effectively, as seen in the CII-Sohrabji Godrej Green Business Centre in India [49]. Access to financing,

highlighted by 75% of respondents, addresses the challenge of high initial costs through innovative funding mechanisms, such as green bonds and grants [47]. Capacity building was also essential, with 70% of respondents emphasizing the need for trained professionals capable of implementing sustainable practices effectively [45].

Table 9: Success Factors for Sustainable Construction

SN	Success Factor	Percentage of Respondents	Key Projects/Examples
1	Government Support	80%	Kigali Green City Pilot (Rwanda)
2	Stakeholder Collaboration	78%	CII-Sohrabji Godrej Green Business Centre (India)
3	Access to Financing	75%	Kigali Green City Pilot (Rwanda)
4	Capacity Building	70%	CII-Sohrabji Godrej Green Business Centre (India)

E. Challenges in Sustainable Construction

The study identifies key barriers to the widespread adoption of sustainable construction practices, as shown in Table 10. Financial constraints emerged as a significant challenge, cited by

68% of respondents. Although awareness of sustainability is growing, a considerable portion of stakeholders still lack a comprehensive understanding of sustainable practices, limiting their widespread adoption. Weak regulatory frameworks further compound the issue, as

insufficient regulatory support and enforcement undermine effective implementation. Only 30% of respondents indicated that existing regulations adequately support sustainability. Technical barriers, such as limited access to advanced technologies and insufficient technical expertise, were reported by 50% of respondents.

These findings corroborate

secondary sources, which emphasize financial, regulatory, and technical challenges in the adoption of sustainable construction practices [42, 46]. The primary data provides further insight into these barriers within specific contexts, emphasizing the need for targeted strategies to address them and facilitate the adoption of sustainable practices.

Table 10: Major Challenges in Sustainable Construction

SN	Challenge	Percentage of Respondents
1	Financial Constraints	68%
2	Lack of Awareness	55%
3	Inadequate Regulations	70%
4	Technical Barriers	50%

F. Addressing the Challenges

To overcome the barriers identified, several solutions and strategies have been proposed:

i. Innovative Financing Mechanisms: Utilizing green bonds, international grants, and public-private partnerships can mitigate initial costs associated with sustainable projects. These funding options are essential for overcoming the financial barriers that many developing

countries face, as seen in successful projects like the Kigali Green City Pilot [47].

ii. Enhanced Regulatory Frameworks: Strengthening regulatory frameworks and enforcement mechanisms can promote sustainable construction by setting clear standards and providing incentives for compliance. Governments should adopt stringent sustainability standards, coupled with

financial incentives, to encourage developers to adopt sustainable practices [44].

iii. Capacity Building Programs: Training construction professionals is crucial for bridging the technical expertise gap. Capacity-building initiatives should be integrated into project planning and execution to ensure sustainability is prioritized from the outset [45]. Projects like the CII-Sohrabji Godrej Green Business Centre, which invested in training programs, demonstrate the positive impact of capacity building on project success.

iv. Awareness Campaigns: Targeted awareness campaigns can help increase understanding and support for sustainable practices among stakeholders. Such campaigns should emphasize the long-term economic and environmental benefits of sustainability, fostering a culture of sustainability within the industry and public [43].

v. Stakeholder Collaboration: Governments, developers, and international organizations should collaborate to implement these strategies. Governments should create policies that support sustainable construction, while developers prioritize stakeholder engagement and capacity building. International organizations can offer financial and technical support, providing essential resources to advance sustainable practices.

G. Implications for Policy and Practice

The findings have substantial implications for both policy and practice within the construction industry in developing countries. Sustainable practices can result in long-term cost savings, improved environmental performance, and enhanced resilience to climate change. Construction firms should prioritize sustainability by incorporating eco-friendly materials, energy-efficient designs, and waste reduction strategies into their core

operations. Leveraging innovative financing options, such as green bonds and public-private partnerships, can provide essential funds to support these initiatives.

Policymakers play a critical role in fostering sustainable construction. Governments should establish comprehensive sustainability policies that mandate green building practices. These policies must be clear, enforceable, and aligned with international standards to ensure compliance. Offering financial incentives, including tax breaks, grants, and subsidies, can encourage developers to invest in sustainable construction by offsetting higher initial costs. Strengthening regulatory frameworks and enhancing enforcement mechanisms will ensure effective implementation of these policies, ultimately leading to widespread adoption of sustainable construction practices.

V. Conclusion

This study has provided a comprehensive examination of sustainable construction practices in developing

countries, identifying key success factors, challenges, and potential solutions. Key findings reveal that while awareness of sustainable practices is relatively high (75% of respondents), their implementation is still limited (45% of projects). Financial constraints, cited by 68% of respondents, emerged as the most significant barrier. Other major challenges include lack of awareness, inadequate regulatory frameworks, and technical barriers. Conversely, government support, stakeholder collaboration, access to innovative financing, and capacity building were identified as critical success factors. This study makes several important contributions to both academic and practical understanding of sustainable construction in developing countries. Academically, it extends existing literature by providing empirical evidence on the factors that influence the adoption and success of sustainable construction practices in these regions. It highlights the critical role of capacity building, a factor often

underrepresented in previous research. Practically, the study offers actionable insights for policymakers, construction professionals, and stakeholders. By identifying key barriers and success factors, the study provides a roadmap for enhancing the adoption of sustainable construction practices, thereby contributing to environmental sustainability and economic development.

Despite its contributions, this study has several limitations. First, the data collection relied on self-reported measures, which may be subject to response biases. Second, the sample was limited to specific regions and may not fully represent the diverse contexts within developing countries. Third, while the study employed a mixed-methods approach, the qualitative data was not exhaustive, and additional in-depth case studies could provide further insights. Lastly, the rapidly changing nature of sustainable technologies and practices means that the findings may need periodic updating to remain relevant. Future research should aim to address these

limitations by expanding the scope and depth of data collection. Longitudinal studies tracking the implementation and outcomes of sustainable construction projects over time would provide valuable insights into the long-term effectiveness of various strategies. Additionally, more extensive qualitative research, including detailed case studies from diverse regions, would enrich the understanding of contextual factors influencing sustainable construction. Further exploration of innovative financing mechanisms and their impact on project success is also warranted. Finally, examining the role of emerging technologies in promoting sustainability in the construction industry would be a valuable area of inquiry.

VI. Acknowledgement

Author would like to appreciate the support of his supervisors Professor D.S. Yawas, Professor B. Dan-asabe and Dr. A.A. Alabi who have guided him throughout the research work and have made valuable contribution to its success.

VII. References:

- [1] C. J. Kibert, Sustainable Construction: Green Building Design and Delivery. New Jersey: John Wiley & Sons, 2016.
- [2] G. K. C. Ding, "Sustainable construction—The role of environmental assessment tools," *J. Environ. Manage.*, vol. 86, no. 3, pp. 451-464, 2008.
- [3] B.-G. Hwang and W. J. Ng, "Project management knowledge and skills for green construction: Overcoming challenges," *Int. J. Proj. Manage.*, vol. 31, no. 2, pp. 272-284, 2013.
- [4] G. Ofori, "Sustainable construction in developing countries," *Constr. Manage. Econ.*, vol. 33, no. 5-6, pp. 379-388, 2015.
- [5] G. Ofori, "Construction in developing countries," *Constr. Manage. Econ.*, vol. 25, no. 1, pp. 1-8, 2007.
- [6] C. Du Plessis, "A strategic framework for sustainable construction in developing countries," *Constr. Manage. Econ.*, vol. 25, no. 1, pp. 67-76, 2007.
- [7] K. Williams and C. Dair, "What is stopping sustainable building in England? Barriers experienced by stakeholders in delivering sustainable developments," *Sustain. Dev.*, vol. 15, no. 3, pp. 135-147, 2007.
- [8] J. Zuo and Z. Y. Zhao, "Green building research—current status and future agenda: A review," *Renew. Sustain. Energy Rev.*, vol. 30, pp. 271-281, 2014.
- [9] C. Du Plessis, "A strategic framework for sustainable construction in developing countries," *Constr. Manage. Econ.*, vol. 25, no. 1, pp. 67-76, 2007.
- [10] A. Darko and A. P. C. Chan, "Critical analysis of green building research trend in construction journals," *Habitat Int.*, vol. 57, pp. 53-63, 2016.
- [11] T. O. Adewuyi and M. Otali, "Evaluating sustainable construction practices in the Nigerian construction industry," *Int. J. Sustain. Build. Technol. Urban Dev.*, vol. 4, no. 2, pp. 139-147, 2013.
- [12] J. Yates and D. Castro-Lacouture, "Sustainability in engineering design and construction education," *J. Prof. Issues Eng. Educ. Pract.*, vol. 140, no. 3, p. A4013001, 2014.
- [13] C. J. Kibert, Sustainable Construction: Green Building Design and Delivery. New Jersey: John Wiley & Sons, 2016.
- [14] G. K. C. Ding, "Sustainable construction-The role of environmental assessment tools," *J. Environ. Manage.*, vol. 86, no. 3, pp. 451-464, 2008.
- [15] B.-G. Hwang and W. J. Ng, "Project management knowledge and skills for green construction: Overcoming challenges," *Int. J. Proj. Manage.*, vol. 31, no. 2, pp. 272-284, 2013.
- [16] R. E. Dodge, "The history and evolution of sustainable construction," in *Conf. Sustain. Constr.*, 2012.

[17] S. Fowler and R. Rauch, “Sustainable construction certification,” *Build. Res.*, vol. 25, no. 2, pp. 143-155, 2006.

[18] N. Pless and P. Torcellini, “Net-zero energy buildings,” *Natl. Renew. Energy Lab.*, 2010.

[19] D. Pomponi and A. Moncaster, “Circular economy in the construction industry,” *Build. Environ.*, vol. 56, no. 2, pp. 19-24, 2017.

[20] L. Shen, Y. Wu, and X. Zhang, “Feasibility studies for sustainable construction projects,” *Constr. Manage. Econ.*, vol. 28, no. 5, pp. 483-495, 2010.

[21] A. Darko and A. P. C. Chan, “Green building research trends in construction journals,” *Habitat Int.*, vol. 57, pp. 53-63, 2016.

[22] B.-G. Hwang and J. Tan, “Challenges in green building project management,” *Int. J. Sustain. Build. Tech.*, vol. 4, no. 3, pp. 45-56, 2012.

[23] M. Mokhlesian and E. Holmén, “Business model changes for green construction,” *J. Clean. Prod.*, vol. 32, pp. 291-303, 2012.

[24] T. Adewuyi and M. Otali, “Performance evaluation of sustainable construction in Nigeria,” *Sustain. Cities Soc.*, vol. 7, pp. 10-16, 2013.

[25] J. Yates and D. Castro-Lacouture, “Sustainability in engineering design and construction education,” *J. Prof. Issues Eng. Educ. Pract.*, vol. 140, no. 3, p. A4013001, 2014.

[26] C. J. Kibert, *Sustainable Construction: Green Building Design and Delivery*. New Jersey: John Wiley & Sons, 2016.

[27] G. K. C. Ding, “Sustainable construction-The role of environmental assessment tools,” *J. Environ. Manage.*, vol. 86, no. 3, pp. 451-464, 2008.

[28] B.-G. Hwang and W. J. Ng, “Project management knowledge and skills for green construction: Overcoming challenges,” *Int. J. Proj. Manage.*, vol. 31, no. 2, pp. 272-284, 2013.

[29] R. E. Dodge, “The history and evolution of sustainable construction,” in *Conf. Sustain. Constr.*, 2012.

[30] S. Fowler and R. Rauch, “Sustainable construction certification,” *Build. Res.*, vol. 25, no. 2, pp. 143-155, 2006.

[31] N. Pless and P. Torcellini, “Net-zero energy buildings,” *Natl. Renew. Energy Lab.*, 2010.

[32] D. Pomponi and A. Moncaster, “Circular economy in the construction industry,” *Build. Environ.*, vol. 56, no. 2, pp. 19-24, 2017.

[33] L. Shen, Y. Wu, and X. Zhang, “Feasibility studies for sustainable construction projects,” *Constr. Manage. Econ.*, vol. 28, no. 5, pp. 483-495, 2010.

[34] A. Darko and A. P. C. Chan, “Green building research trends in construction journals,” *Habitat Int.*, vol. 57, pp. 53-63, 2016.

[35] M. M. G. Muhammed, (2023) *Enhancing climate adaptation: The role of climate resilient housing in Africa's cities*, [Online] Available: <https://www.brookings.edu/article/s/enhancing-climate-adaptation-the-role-of-climate-resilient-housing-in-africas-cities/>

[36] M. Mokhlesian and E. Holmén, "Business model changes for green construction," *J. Clean. Prod.*, vol. 32, pp. 291-303, 2012.

[37] T. Adewuyi and M. E. Otali, "Evaluating sustainable construction in Nigeria: Barriers, drivers and strategies," *J. Sustain. Build. Technol. Urban Dev.*, vol. 4, no. 3, pp. 137-144, 2013.

[38] Q. Qi, H. Shen, J. Zuo, and D. R. Schultz, "Understanding collaborative relationships in sustainable construction," *Construction Management and Economics*, vol. 28, no. 3, pp. 322-334, 2010.

[39] L. Shen, Y. Tam, and X. Zhang, "Implementation of sustainable construction practices: A comparative study of developing and developed countries," *Construction Management and Economics*, vol. 28, no. 10, pp. 1028-1039, 2010.

[40] C. Du Plessis, "A strategic framework for sustainable construction in developing countries," *Building Research and Information*, vol. 30, no. 5, pp. 339-348, 2007.

[41] J. W. Creswell and V. L. Plano Clark, *Designing and Conducting* Mixed Methods Research. Thousand Oaks, CA: SAGE Publications, 2017.

[42] O. Ametepey, K. Aigbavboa, and C. Ansah, "Barriers to successful implementation of sustainable construction in the Ghanaian construction industry," *Procedia Manuf.*, vol. 3, pp. 1682-1689, 2015.

[43] G. Ofori, "Challenges of construction industries in developing countries: Lessons from various countries," *Construction Management and Economics*, vol. 25, no. 1, pp. 1-10, 2007.

[44] G. Ofori, "Sustainable construction in developing countries: A framework for planning and implementation," *Construction Management and Economics*, vol. 33, no. 5-6, pp. 386-397, 2015.

[45] B.-G. Hwang and J. S. Tan, "Sustainable project management for green construction: Challenges and practical solutions," *Project Management Journal*, vol. 43, no. 6, pp. 13-26, 2012.

[46] A. Darko and A. P. C. Chan, "Green building research trends: A review of current research across construction journals," *Habitat International*, vol. 57, pp. 53-63, 2016.

[47] T. O. Adewuyi and M. E. Otali, "Evaluating sustainable construction in Nigeria: Barriers, drivers and strategies," *J. Sustain. Build. Technol. Urban Dev.*, vol. 4, no. 3, pp. 137-144, 2013.

[48] Q. Qi, H. Shen, J. Zuo, and D. R. Schultz, "Understanding collaborative relationships in sustainable construction," *Construction Management and Economics*, vol. 28, no. 3, pp. 322-334, 2010.

[49] L. Shen, Y. Tam, and X. Zhang, "Implementation of sustainable construction practices: A comparative study of developing and developed countries," *Construction Management and Economics*, vol. 28, no. 10, pp. 1028-1039, 2010.

[50] C. Du Plessis, "A strategic framework for sustainable construction in developing countries," *Building Research and Information*, vol. 30, no. 5, pp. 339-348, 2007.

[51] B.-G. Hwang and W. J. Ng, "Project management knowledge and skills for green construction: Overcoming challenges," *International Journal of Project Management*, vol. 31, no. 2, pp. 272-284, 2013.

[52] J. Zuo and Z. Zhao, "Green building research – Current status and future agenda: A review," *Renewable and Sustainable Energy Reviews*, vol. 30, pp. 271-281, 2014.

[53] V. Braun and V. Clarke, "Using thematic analysis in psychology," *Qualitative Research in Psychology*, vol. 3, no. 2, pp. 77-101, 2006.

