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Abstract— The construction industry is a
major  contributor to global carbon
emissions, necessitating accurate predictive
models for sustainable development. This
study compares the performance of fine tree
regression (Rtree) and adaptive neuro-fuzzy
1 September inference system (ANFIS) in predicting
2025 carbon footprints across four stages of
residential construction: production,
transportation, operational, and destruction.
A dataset of 2000 observations was used,
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with an 80 to 20 split for training and testing.
The models were evaluated using root mean
square error (RMSE) and mean absolute
percentage error (MAPE). Results indicate
that ANFIS outperforms Rtree in all stages.
ANFIS achieved an RMSE of 0.5142 at the
production stage compared to 0.5317 for
Rtree. ANFIS obtained an RMSE of 447.07
in the transportation stage, while Rtree
recorded 492.23. The operational stage
showed an RMSE of 1179.3 for ANFIS
versus 1386.5 for Rtree. At the destruction
stage, ANFIS demonstrated superior
accuracy with an RMSE of 0.0610
compared to 0.0631. The findings suggest
that ANFIS provides more precise
predictions and is a reliable model for
estimating carbon footprints in residential
construction. This study contributes to
sustainable construction by offering an
efficient tool for reducing environmental
impact.

I. Introduction

dioxide emissions in 2021.

The construction industry is
one of the largest contributors to
global greenhouse gas emissions,
making it a significant factor in
climate change. According to
Alam Bhuiyan, et al. [1],
construction activities accounted
for approximately 39% of global
final energy consumption and
37% of energy-related carbon
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These  alarming statistics
highlight the urgent need for the
industry to adopt sustainable
practices to  mitigate its
environmental  impact. A
fundamental step in this
the ability to
accurately predict a project's
carbon footprint, which enables
stakeholders  to

transition 1is

implement
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effective strategies for reducing
emissions throughout a
building's lifecycle.

Carbon footprint estimation is
typically  categorized  into
embodied and  operational
carbon [2]. Embodied carbon
refers to emissions generated
during  material  extraction,
production, transportation, and
construction, while operational
carbon arises from energy
consumption during a building's
use phase, including heating,
cooling, and lighting [3].
Traditional methods such as life
cycle assessment (LCA) and
benchmark-based calculations
have been widely used for
carbon footprint
these methods are

estimation.
However,
often  time-consuming  and
susceptible to inaccuracies due
to data  variability and
inconsistencies [4]. Therefore,

advanced computational
techniques such as machine
learning offer a promising
alternative ~ for  improving
prediction accuracy and
efficiency.

Machine learning models have
been increasingly applied in
construction to analyze large

ISSN: 2180-3811 Vol. 16

datasets and identify patterns in
carbon emissions [5-7]. Previous
studies have demonstrated the
potential of support vector
regression (SVR) [8-10] and
artificial  neural  networks
(ANNSs) [11, 12] in predicting
carbon footprints for various
building types. For instance,
Chu and Zhao [13] utilized SVR
to estimate the operational
carbon footprint of residential
buildings, while Wei, et al. [14]
applied ANNs to forecast the
embodied carbon footprint of
prefabricated structures. Despite
these advancements,
research has directly compared
different learning
models to determine the most

limited
machine

effective approach for carbon
footprint prediction in
residential construction.

This study aims to address this
gap by  evaluating  the
performance of fine tree
regression (Rtree) and adaptive
neuro-fuzzy inference system
(ANFIS) in predicting carbon
footprints  across  different
construction stages.
Additionally, this  research
develops a user-friendly

graphical interface using
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MATLAB  GUI,
stakeholders to input project
details and visualize predicted
carbon emissions efficiently. By

enabling

conducting a structured
comparison of these two
machine learning techniques,

this study provides valuable
insights into the most effective
model for accurate and reliable
carbon footprint estimation in
residential construction projects.
The significance of this study
lies in addressing the urgent
need for industry to adopt
sustainable practices. Given that
traditional methods for carbon
footprint estimation are often
time-consuming and susceptible
to inaccuracies, and that limited
research has directly compared
different machine learning
models, this research aims to
address this gap. By conducting
a structured comparison of
RTree and ANFIS, this study
provides valuable insights into
the most effective model for
accurate and reliable carbon
footprint  estimation. The
findings  offer  substantial
practical value by providing a
data-driven pathway for
stakeholders, which can assist

194 ISSN: 2180-3811
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architects, engineers, and project

managers 1in evaluating the
environmental impact of
different construction strategies

at an early stage, thereby
enabling informed decisions that

align with sustainability goals

II. Methodology

This study adopts a structured
methodology to compare the
effectiveness of RTree and
ANFIS in predicting the carbon
footprint of
construction  projects.  The
research framework consists of

residential

five key phases: data collection,
data  preprocessing, = model
development, model evaluation,
and result discussion. The
primary  objective is  to
determine ~ which  machine
learning model provides more
accurate and reliable carbon
footprint predictions, ultimately
supporting sustainable
construction practices.

The study considers four major
stages in the building lifecycle:
production, transportation,
operation, and destruction. Data
for each stage is collected and
processed to develop predictive
models using RTree and ANFIS.
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The models are evaluated using
multiple error metrics, including
root mean squared error (RMSE),
mean absolute percentage error
(MAPE), and mean squared
logarithmic error (MSLE). The
findings provide insights into the
performance of both models and
offer
selecting the most effective

recommendations  for
approach.

A. Data Collection and
Preparation
Accurate  carbon
prediction in
construction requires a
comprehensive dataset
encompassing various stages of

footprint
residential

a building’s life cycle. The data
utilized in this study includes
information related to material
selection, transportation,
operational energy consumption,
and demolition waste
management. Since
inconsistencies in data
collection can impact model
performance, a  systematic
approach was adopted to ensure
data reliability and integrity.
This section outlines the sources
of data, key  variables,
preprocessing techniques for

ISSN: 2180-3811 Vol. 16

standardization, and the
procedure for splitting the
dataset into training and testing
subsets for machine learning
model development.

The dataset used in this study
was compiled from multiple

research ~ publications  and
industry reports on carbon
emissions in residential

construction  projects.  The
primary variables considered
include emissions from the
construction  stage  (Ucon),
transportation  stage (Ui,
operational stage (Ugppe), and
demolition stage (Usem). The
total carbon footprint (Us:) was
calculated as the sum of
emissions across these stages
expressed as Equation (1).

Utot = Ucon + Umt + Uope + Udem(l)

Each stage was further defined
by specific input variables, such
as material production emissions
> Wp,iSmpi  (in - MPa), fuel
consumption during
transportation Y S,:/C (in km/L),
and operational energy
consumption (Now + Noo +
Noe)Seie where Seie represents
energy efficiency coefficients.
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The demolition stage was
estimated as a percentage of the
initial construction emissions

using the equation Uden =

0.1%Ucon [5]. Table 1 presents
the ranges of key variables used
in the dataset.

Table 1: Ranges of Key Variables in the Dataset

Variable Minimum Value Maximum Value
Ucon (MPa) 11000 414670
Uy (km/L) 2.06 17.82
Uope (kWh) 2949 26000
Uden (kg CO2) 88.93 239

Before the data could be
utilized for machine learning, it
cleaning and
standardization to ecliminate

underwent

inconsistencies  and
comparability across different
sources. Missing values were
addressed using
interpolation, particularly for
emission factors

ensure

linear

that varied

studies.
Standardization was performed
by scaling the variables to a
uniform range, ensuring that all

between

numerical features were
normalized  between  their
respective minimum and
maximum values. This
preprocessing step prevented
certain variables from
disproportionately influencing

the model due to their larger
numerical scales. Additionally,

196 ISSN: 2180-3811
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outliers were examined and
removed to improve prediction
accuracy and model stability.
Once the dataset was cleaned
and standardized, it was split
into training and testing subsets
to develop and evaluate the
machine learning models. An
80/20 ratio was used, where 80%
of the data (1,600 samples) was
allocated for training, and the
remaining 20% (400 samples)
was reserved for testing. The
training dataset was used to
optimize model parameters and
learn patterns, while the testing
dataset provided an unbiased
evaluation of the model’s
predictive  accuracy.  This
division ensured that the models
could generalize well to unseen
data, reducing the risk of
overfitting. The RTree and
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ANFIS models were trained
separately, with hyperparameter
tuning applied during cross-
validation to enhance predictive
performance.

B. Machine Learning Model
Development

To enable accurate prediction
of carbon emissions in
residential construction projects,
two supervised machine
learning  techniques
selected for evaluation: RTree
and ANFIS. These models were
chosen due to their proven
performance  in  nonlinear
regression problems and their
ability to handle
datasets with diverse input
variables [15, 16]. Both models
were implemented  using
MATLAB, and each was trained
and tested using a dataset
comprising carbon emissions
data from wvarious life cycle
stages. The  purpose  of
developing these models was to
compare their predictive
performance in estimating total
and  stage-specific  carbon
footprints, ultimately identifying
the most suitable approach for

WwWEre

complex

ISSN: 2180-3811 Vol. 16

sustainable construction
forecasting.

The RTree model is a type of
decision tree regression
algorithm  that  recursively

partitions the dataset into
smaller subsets by identifying
optimal split points [17]. The
tree structure is formed by
choosing features and thresholds
that minimize variance within
the target variable, in this case,
the carbon footprint. During
model training, hyperparameters
such as the leaf size and
maximum depth were tuned
five-fold
approach.  This

using a Cross-
validation
iterative process helped reduce
overfitting and  improved
generalization [18]. The model
was developed and tested across
all life cycle stages, which are
construction, transportation,
operation, and demolition, as
well as for the total emissions.
Figure 1 illustrates the structure
of a typical RTree used in this
study, where decision nodes
represent feature conditions and

terminal nodes represent
predicted carbon  emission
values.
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Condition 1

Figure 1: Structure of Fine Tree
Regression Model

The adaptive
inference  system

neuro-fuzzy

combines
neural network learning
capabilities with fuzzy logic
principles to model complex
nonlinear relationships between
input and output variables [19,
20]. ANFIS is structured with
layers that include fuzzification
of inputs, rule evaluation, and
output defuzzification. In this
study, the ANFIS model was
trained using the same dataset as
the RTree model, segmented
across different construction
stages. Triangular membership
functions were used to define
fuzzy sets for input variables,
and the number of membership
functions was optimized to
balance model complexity and
accuracy. During training, the
system learned the optimal
parameters for each fuzzy rule
using a hybrid learning
algorithm that combined

198 ISSN: 2180-3811

gradient descent and least
squares estimation. Figure 2
provides a schematic overview
of the ANFIS architecture used

for prediction.

|m--mmm-mm “ Update Help | Cose I

Figure 2: ANFIS Architecture for
Carbon Emission Prediction

C. Model Evaluation Metrics

The effectiveness of a
predictive model is contingent
on how
estimate values when applied to
previously unseen data. In this
study, the performance of the
RTree and ANFIS models was
assessed using four widely
recognized evaluation metrics.
These include MAE, RMSE,
MAPE and MSLE. Each metric
provides a unique perspective on
the deviation between predicted
and actual carbon emission
The combination of

accurately it can

values.
these metrics offers a
comprehensive assessment of
both absolute and relative
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prediction errors, allowing for a
robust comparison of model
performance across different
stages of the residential building
life cycle.

The MAE quantifies the
average magnitude of errors
between predicted values and
actual observations. It is a
straightforward and
interpretable metric that
measures the absolute deviation
without considering the
direction of the error. MAE is
particularly valuable for
understanding how much, on
average, the model’s predictions
deviate from true values. It is
defined  mathematically as
Equation (2).

1 ~
MAE:;Z?=1|}’1'_}’:| (2)

where:

y; = actual value

y, = predicted value

n = number of observations

A lower MAE indicates a more
accurate model, and because it is
not sensitive to outliers, it
provides a balanced view of
average error magnitudes. The

RMSE measures the square root
of the average  squared

ISSN: 2180-3811 Vol. 16

differences between the
predicted and actual values.
Unlike MAE, RMSE penalizes
larger errors more heavily due to
the squaring of residuals,
making it particularly useful
when large
undesirable. The formula for

RMSE is shown in Equation (3).

RMSE= 'S, (=50 (3)

RMSE s
regression analysis as a key
indicator of model performance,
especially when higher precision

deviations are

often wused in

is needed. A model with a lower
RMSE value demonstrates a
stronger capability to predict
carbon emissions with minimal
large-scale error fluctuations.
The MAPE expresses the
prediction error as a percentage,
providing insight into the
relative size of the error in
comparison to the actual values.
MAPE is particularly valuable in
real-world applications where
understanding the error in
percentage terms aids in
interpretability. The formula for
MAPE is shown in Equation (4).

MAPE — 100% n

n

At—Ft
At

(4)
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where:
A¢ = actual values at time (t)
F: = forecasted values at time (t)

While MAPE is intuitive, it can
be sensitive when actual values
are very small, which can distort
the percentage
Nevertheless, it remains one of
the most widely used metrics for
evaluating forecasting models,
particularly in sustainability
assessments.

The MSLE evaluates the ratio
between the actual and predicted
values on a logarithmic scale.
This metric is particularly
suitable for datasets where
values span multiple orders of
magnitude or when the goal is to
penalize underestimations more

CITor.

gently than overestimations. The
MSLE formula is Equation (5).

log(1 + A,)

1 2
MSLE = n =1 (— log(1 + Ft)> ®)

By transforming both actual
and predicted values using the
logarithmic function, MSLE
captures relative differences and
is less sensitive to large absolute
errors. This makes it especially
relevant in the context of carbon
footprint  prediction, where

200 ISSN: 2180-3811
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emission values can vary

substantially between
construction stages and projects.
Lower MSLE values signify that
the model is effective at
capturing proportional
differences, which is essential
for accurate long-term

sustainability forecasting.

D. Hyperparameter

Optimization
The accuracy and
generalizability of machine

learning  models can  be
significantly influenced by the
configuration of their internal
parameters, known as
hyperparameters. These
parameters are not learned
during the training process but
must be defined prior to model

training. Hyperparameter
optimization involves
systematically  tuning these

values to enhance predictive
performance. For this study,
both the RTree and ANFIS
models underwent optimization
procedures tailored to their
respective  architectures. By
applying cross-validation and
iterative testing, the models
were refined to achieve optimal

No.2 July - December 2025
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accuracy across all stages of the
residential building life cycle.
For the RTree model, the key
hyperparameters included the
minimum leaf size and the
maximum number of splits. A
five-fold

approach was
model

cross-validation
employed to
performance
across different configurations,

assess
ensuring the selection of
parameters that minimized the
risk of overfitting. For the
ANFIS model, the optimization
focused on the number and type
of membership functions used in
the fuzzy inference system.
Triangular membership
functions (trimf) were selected
for their balance between
simplicity and modeling
capacity, and the number of

fuzzy rules was adjusted

accordingly. The results of the
hyperparameter  tuning  are
summarized in Table 2, which
presents the best-performing
configurations based on RMSE
and MSE across different life
cycle stages.

Table 2 demonstrates that
ANFIS consistently achieved
lower RMSE and MSE values
across all stages compared to the
RTree model.
highlights the effectiveness of
ANFIS in capturing nonlinear
relationships through its hybrid

This outcome

neuro-fuzzy architecture.
Moreover, the optimization
process confirmed the
importance of selecting

appropriate hyperparameters to
ensure precise and reliable
carbon footprint predictions in
residential construction contexts.

Table 2: Optimized Hyperparameters and Performance Metrics for Fine Tree and

ANFIS Models
Stage Model Optimized RMSE MSE
Parameter(s)
Construction ~ RTree Leaf size = 50 0.514 1.53 x 1072
Transportation RTree Leaf size = 30 447.07 6.53 x10°®
Operational RTree Leaf size = 15 1179.3 5.18 x 1077
Demolition RTree Leaf size = 50 0.061 1.74 x 107"
Total RTree Leaf size = 50 1608.6 1.47 x 10
Membership 0.000 — 1.53 x 102
All Stages - ANFIS - tion = trimf 0013  —147x10*

ISSN: 2180-3811
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ITI. Results and Discussion
This section presents a
comparative analysis of the
RTree and ANFIS across all
major stages of a residential
building’s life cycle. The
performance of each model was
evaluated wusing four key
metrics: MAE, RMSE, MAPE,
MSLE. These metrics allow for
a robust assessment  of
prediction accuracy, enabling
identification of the most
effective model for estimating
carbon emissions. The
discussion is organized by
construction stages, providing
insights into model behavior
under varying conditions and
data  distributions.  Figures
accompanying each subsection
illustrate metric values for visual
comparison.

A. Comparison of Model
Performance Across
Construction Stages

In the production stage, the

ANFIS  model consistently

outperformed the RTree model

across all evaluation metrics. As
shown in Figure 3, ANFIS
achieved lower MAPE and

MSLE values, indicating its

superior ability to generalize

202 ISSN: 2180-3811

Vol. 16

patterns from the training data
and deliver more accurate
predictions. The MAPE of
ANFIS was significantly lower,
suggesting that its relative error
was smaller than that of RTree.

Similarly, MSLE values
revealed that ANFIS handled
variations In scale more

effectively, maintaining stability
even when the emission values
ranged widely. These results
suggest that ANFIS is more
capable of capturing the
nonlinear relationships  that
characterize material production

emissions, which are often

influenced by multiple

interacting factors such as
material type, volume, and
energy intensity.

3.00E-14 - 0.00004

+ E-28

I+ 0.00003

2.00E-14 L 6.00E-28

|- 0.00002
+ E-28
1.00E-14

| 2 00F $§0001

0.00E+00 | £ 20000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Data Set

Figure 3: Comparison of ANFIS and
RTree Model Performance in the
Production Stage

In the transportation stage, a
similar trend was observed.
ANFIS again demonstrated

No. 2 July - December 2025



A Comparative Analysis of Fine Tree Regression and ANFIS for Predicting Carbon
Footprints in Residential Construction

better predictive performance
than the RTree model, as
illustrated in Figure 4. The
transportation  stage
emissions generated from the
movement  of

involves

construction
materials to site locations, which
often varies depending on fuel
efficiency, vehicle type, and
transportation distance. ANFIS,
with its fuzzy logic capabilities,
proved more
managing this variability.

effective in

00015 @ MAPE % ANFis| r 1.9
C] MAPE % Rree|
£\ MSLE ANFIS 06 |- 0.0000020
O MSLE RTree Los

|
0.0010 - 0.0000015

F0.0000010
0.0005 4

I 0.0000005

0.0000
I~ 0.0000000

0 200 400 B00 800 1000 1200 1400 1600 1800 2000
Data Set

Figure 4: Model Evaluation at the
Transportation Stage Using MAPE
and MSLE Metrics

The RMSE and MAPE values
were consistently lower for
ANFIS, confirming that it
produced
forecasts with fewer large errors.
In contrast, the RTree model

more accurate

showed slightly higher
variability in predictions, which
could be attributed to its

deterministic partitioning

ISSN: 2180-3811

strategy that may not capture
nuanced changes in
parameters.

During the operational stage,
which accounts for long-term

input

energy consumption such as
lighting, heating, and cooling,
ANFIS once again outperformed
RTree, as shown in Figure 5.

* MAPE % ANFis| ro1s
@ MAPE % RTre
' MSLE ANFIS.
0.0010 [ _MSLERTree

0.000001

0.0005 4} A 00000005

- 0 0000000,

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Data Set

Figure 5: Performance of ANFIS and
RTree Models in the Operational

Stage
The difference in model
accuracy became more

pronounced in this phase due to
the complex interplay between
occupancy behavior, appliance
efficiency, and energy demand.
ANFIS maintained lower MAPE
and MSLE values across most of
the test samples, suggesting it
could better approximate the
time-dependent and usage-based
characteristics of operational
RTree, although
competent, showed an increase

emissions.
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in both absolute and percentage-
based errors in this stage,
reflecting its limited adaptability
to continuous temporal trends
within operational datasets.

In the demolition stage, both
models exhibited
close performance, given the
more predictable nature of end-
of-life ~ building  activities.
However, as depicted in Figure
6, ANFIS still achieved slightly
lower RMSE and MAPE values
than RTree.

3.00E-14

relatively

- 0.00004

2.00E-14
- 0.00003

1.00E-14 [ 0-00002

y: - 0.00001
0.00E+00 F

- 0.00000

T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Data Set

Figure 6: Evaluation of Carbon
Emission Prediction Accuracy in the
Demolition Stage

The demolition stage typically
repetitive  processes
such as material removal, waste
handling, and site clearing,

involves

which tend to generate emission
patterns with lower variance.
Despite the smaller performance
gap, ANFIS
greater consistency in prediction,
likely due to its ability to model

demonstrated

204 ISSN: 2180-3811

even minor nonlinear
fluctuations through its fuzzy
inference mechanism. RTree, in
contrast, performed adequately
but  with  slightly larger
deviations from actual values in
certain test instances.

In the overall carbon footprint
estimation, which aggregates
emissions across all life cycle
stages, ANFIS clearly emerged
as the more robust model. Figure
7 illustrates a  substantial
reduction in both MAPE and

MSLE when wusing ANFIS

compared to RTree. The
integrated nature of total
emissions increases the

complexity of the prediction task,
as it cumulative
uncertainties and interactions
across stages. ANFIS, trained on
multidimensional inputs
spanning the entire building
process, demonstrated superior
ability to  model  these
interactions. Its low RMSE and
MSE values confirm its overall

involves

accuracy, making it a more
reliable tool for practitioners
aiming  to total
environmental ~ impact. In
contrast, RTree, while
interpretable and

forecast

easier to
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implement, was more resulting in less precise total
susceptible to  compounded emissions predictions.
errors across the  stages,
0.0030, 32 o MAPE%ANFis 035] D) o MAPE % RTree
0.0025] o 0.30]
£ . 8025
£o.0020; ¢ Zo2s
< 2 & 0.20]
£00015{ @ £
Yooo10] § Eo'”—’
g 0.10
= 0.0005 0.05 \\ \
0.0000 | 0.00 k\
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0.000007{C), Data Set oiod Data Set
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w 0000003 @ w 008
] = 0.06
2 ooo0002| $ 2 ooal
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Figure 7: Total Carbon Footprint Prediction Accuracy Across All Life Cycle
Stages a) MAPE for ANFIS, b) MAPE for Rtree, ¢) MSLE for ANFIS, and d)

MSLE for Rtree

B. Model Strengths and of neural networks with the
Weakness interpretability of fuzzy
The comparative analysis inference systems. As a result,
between the RTree and ANFIS ANFIS demonstrated a higher
models revealed distinct degree of flexibility and
strengths and limitations accuracy in modeling emission
inherent to each approach. patterns that vary due to factors
ANFIS consistently such as energy consumption,

outperformed RTree cross all
life cycle stages, particularly in
scenarios
nonlinear relationships among
input variables. This advantage
can be attributed to ANFIS’s
hybrid  architecture, = which
combines the learning capability

involving complex,

ISSN: 2180-3811
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construction material diversity,
and user behavior in operational

stages.
One of the most notable
strengths of ANFIS is its

adaptability to uncertainty and
imprecision in input data. In the
context of carbon footprint
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prediction, where
parameters are often derived
from heterogeneous sources or
subject to estimation, this

characteristic allows for more

input

robust performance.
Furthermore, the
capacity to complex
patterns during training enables
it to generalize effectively across
diverse  project
However, this sophistication
comes at the cost of increased
computational complexity.
Training ANFIS requires careful
tuning of membership functions
and fuzzy rules, and the model
may become computationally

model's
learn

scenarios.

intensive as the number of input
features increases.
On the other hand, the Fine

Tree model offers several
practical advantages,
particularly in  terms  of

simplicity and interpretability.
Its  decision-tree  structure
provides a clear and intuitive
representation of how
features influence the predicted
output, making it useful for
practitioners seeking
transparency in their decision-
making tools. The Fine Tree
model also trains

input

relatively

206 ISSN: 2180-3811
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quickly and performs well when
the relationship between inputs
and outputs is more linear or
when datasets are relatively
clean and structured.
Nevertheless, its performance
was generally inferior to that of
ANFIS, particularly in handling
high-dimensional data  and
capturing subtle
between features. The tendency
of decision trees to overfit or
underfit,  especially  when
hyperparameters are not
optimally tuned, further limited
the RTree model’s predictive

interactions

accuracy.
In summary, while both
models are viable for carbon
footprint prediction, ANFIS
presents a more powerful
solution for complex and
variable construction datasets,
whereas RTree may be more
appropriate for straightforward
applications requiring speed and
interpretability. The choice of
model should therefore be
guided by the  specific
requirements of the project,
including the nature of the data,
computational

available, and the

resources
desired
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balance between accuracy and
transparency.

C. Practical Implications for
Sustainable Construction
The findings of this study offer
substantial practical value for
advancing sustainable practices
within the construction industry,
particularly in the domain of
residential development. By
demonstrating  the  superior
performance of the ANFIS

model over the Fine Tree
regression approach in
predicting carbon emissions

across various life cycle stages,
this research provides a data-
driven pathway for stakeholders
to integrate intelligent
forecasting tools into their
planning and design workflows.
The predictive capabilities of
ANFIS can assist architects,
engineers, and project managers
in evaluating the environmental
impact of different construction
strategies at an early stage,
thereby  enabling informed
decisions that align with
sustainability goals.

Moreover, the implementation
of a wuser-friendly interface
through MATLAB GUI, as

ISSN: 2180-3811 Vol. 16

developed in this study,
facilitates broader accessibility
and practical deployment of the

model. This tool can be utilized

by professionals without
advanced programming
expertise, allowing seamless

input of project specifications
and real-time visualization of

projected carbon footprints.
Such integration empowers
decision-makers to identify
carbon-intensive phases,

compare alternative materials or
methods, and prioritize
emissions reduction strategies in
accordance  with  regulatory
standards and environmental
certifications, such as LEED or
GreenRE.

The use of machine learning

models also supports
compliance ~ with  emerging
national and  international

climate policies, as governments
increasingly mandate carbon
accounting and emission limits
in the built environment. The
models presented here can serve
as part of a larger digital toolkit
for green construction, where
simulation and optimization are
key to minimizing both
embodied and  operational
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carbon. By providing rapid and
accurate feedback on design
scenarios, this study enables a
shift from reactive to proactive
sustainability planning, thereby
reinforcing the construction
sector’s role in climate action
and environmental stewardship.

IV. Conclusion

This study presented a
comparative analysis of two
machine learning approaches
which are RTree and ANFIS for
predicting carbon footprints
across the life cycle stages of
residential construction projects.
The results demonstrated that
ANFIS consistently
outperformed the Fine Tree
model in terms of accuracy,
generalization, and robustness,
as evidenced by lower error rates
across  multiple  evaluation
metrics including MAE, RMSE,
MAPE, and MSLE. The ANFIS
model's  hybrid
enabled it to effectively capture
nonlinear
manage uncertainties inherent in
construction-related datasets. In
contrast, while the Fine Tree
model offered benefits in terms
of simplicity and interpretability,

architecture

relationships  and

208 ISSN: 2180-3811

Vol. 16

its predictive performance was
generally lower, particularly in
stages with complex emission
dynamics. By integrating the
optimized ANFIS model into a
MATLAB-based graphical user
interface, this study also
contributes a practical tool that
can  support  sustainability-
focused decision-making in real-
world construction  settings.
Overall, the findings underscore
the potential of advanced
machine learning techniques to
enhance environmental
assessment in  the  built
environment, thereby promoting
more sustainable and data-
driven construction practices.
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