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Abstract— This study conducts a 
systematic literature review (SLR) of 90 
publications from 2007 to 2024 on the link 
between conflict and delay in construction 
projects. Conflicts are categorized as 
behavioral, contractual, and technical, with 
93 common conflict factors identified across 
project phases. The research highlights the 
importance of early issue identification and 
phase-specific strategies to reduce delays, 
emphasizing the need for effective project 
management, clear contracts, and thorough 
design. A qualitative methodology, involving 
semi-structured interviews with 18 
construction professionals, explores 
stakeholders' perspective. Thematic 
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Abstract— The construction industry is a 
major contributor to global carbon 
emissions, necessitating accurate predictive 
models for sustainable development. This 
study compares the performance of fine tree 
regression (Rtree) and adaptive neuro-fuzzy 
inference system (ANFIS) in predicting 
carbon footprints across four stages of 
residential construction: production, 
transportation, operational, and destruction. 
A dataset of 2000 observations was used, 
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with an 80 to 20 split for training and testing. 
The models were evaluated using root mean 
square error (RMSE) and mean absolute 
percentage error (MAPE). Results indicate 
that ANFIS outperforms Rtree in all stages. 
ANFIS achieved an RMSE of 0.5142 at the 
production stage compared to 0.5317 for 
Rtree. ANFIS obtained an RMSE of 447.07 
in the transportation stage, while Rtree 
recorded 492.23. The operational stage 
showed an RMSE of 1179.3 for ANFIS 
versus 1386.5 for Rtree. At the destruction 
stage, ANFIS demonstrated superior 
accuracy with an RMSE of 0.0610 
compared to 0.0631. The findings suggest 
that ANFIS provides more precise 
predictions and is a reliable model for 
estimating carbon footprints in residential 
construction. This study contributes to 
sustainable construction by offering an 
efficient tool for reducing environmental 
impact. 

I. Introduction 
The construction industry is 

one of the largest contributors to 
global greenhouse gas emissions, 
making it a significant factor in 
climate change. According to 
Alam Bhuiyan, et al. [1], 
construction activities accounted 
for approximately 39% of global 
final energy consumption and 
37% of energy-related carbon 

dioxide emissions in 2021. 
These alarming statistics 
highlight the urgent need for the 
industry to adopt sustainable 
practices to mitigate its 
environmental impact. A 
fundamental step in this 
transition is the ability to 
accurately predict a project's 
carbon footprint, which enables 
stakeholders to implement 
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effective strategies for reducing 
emissions throughout a 
building's lifecycle. 

Carbon footprint estimation is 
typically categorized into 
embodied and operational 
carbon [2]. Embodied carbon 
refers to emissions generated 
during material extraction, 
production, transportation, and 
construction, while operational 
carbon arises from energy 
consumption during a building's 
use phase, including heating, 
cooling, and lighting [3]. 
Traditional methods such as life 
cycle assessment (LCA) and 
benchmark-based calculations 
have been widely used for 
carbon footprint estimation. 
However, these methods are 
often time-consuming and 
susceptible to inaccuracies due 
to data variability and 
inconsistencies [4]. Therefore, 
advanced computational 
techniques such as machine 
learning offer a promising 
alternative for improving 
prediction accuracy and 
efficiency. 

Machine learning models have 
been increasingly applied in 
construction to analyze large 

datasets and identify patterns in 
carbon emissions [5-7]. Previous 
studies have demonstrated the 
potential of support vector 
regression (SVR) [8-10] and 
artificial neural networks 
(ANNs) [11, 12] in predicting 
carbon footprints for various 
building types. For instance, 
Chu and Zhao [13] utilized SVR 
to estimate the operational 
carbon footprint of residential 
buildings, while Wei, et al. [14] 
applied ANNs to forecast the 
embodied carbon footprint of 
prefabricated structures. Despite 
these advancements, limited 
research has directly compared 
different machine learning 
models to determine the most 
effective approach for carbon 
footprint prediction in 
residential construction. 

This study aims to address this 
gap by evaluating the 
performance of fine tree 
regression (Rtree) and adaptive 
neuro-fuzzy inference system 
(ANFIS) in predicting carbon 
footprints across different 
construction stages. 
Additionally, this research 
develops a user-friendly 
graphical interface using 
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MATLAB GUI, enabling 
stakeholders to input project 
details and visualize predicted 
carbon emissions efficiently. By 
conducting a structured 
comparison of these two 
machine learning techniques, 
this study provides valuable 
insights into the most effective 
model for accurate and reliable 
carbon footprint estimation in 
residential construction projects. 

The significance of this study 
lies in addressing the urgent 
need for industry to adopt 
sustainable practices. Given that 
traditional methods for carbon 
footprint estimation are often 
time-consuming and susceptible 
to inaccuracies, and that limited 
research has directly compared 
different machine learning 
models, this research aims to 
address this gap. By conducting 
a structured comparison of 
RTree and ANFIS, this study 
provides valuable insights into 
the most effective model for 
accurate and reliable carbon 
footprint estimation. The 
findings offer substantial 
practical value by providing a 
data-driven pathway for 
stakeholders, which can assist 

architects, engineers, and project 
managers in evaluating the 
environmental impact of 
different construction strategies 
at an early stage, thereby 
enabling informed decisions that 
align with sustainability goals 
 
II. Methodology 

This study adopts a structured 
methodology to compare the 
effectiveness of RTree and 
ANFIS in predicting the carbon 
footprint of residential 
construction projects. The 
research framework consists of 
five key phases: data collection, 
data preprocessing, model 
development, model evaluation, 
and result discussion. The 
primary objective is to 
determine which machine 
learning model provides more 
accurate and reliable carbon 
footprint predictions, ultimately 
supporting sustainable 
construction practices. 

The study considers four major 
stages in the building lifecycle: 
production, transportation, 
operation, and destruction. Data 
for each stage is collected and 
processed to develop predictive 
models using RTree and ANFIS. 
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The models are evaluated using 
multiple error metrics, including 
root mean squared error (RMSE), 
mean absolute percentage error 
(MAPE), and mean squared 
logarithmic error (MSLE). The 
findings provide insights into the 
performance of both models and 
offer recommendations for 
selecting the most effective 
approach. 

 
A. Data Collection and 

Preparation 
Accurate carbon footprint 

prediction in residential 
construction requires a 
comprehensive dataset 
encompassing various stages of 
a building’s life cycle. The data 
utilized in this study includes 
information related to material 
selection, transportation, 
operational energy consumption, 
and demolition waste 
management. Since 
inconsistencies in data 
collection can impact model 
performance, a systematic 
approach was adopted to ensure 
data reliability and integrity. 
This section outlines the sources 
of data, key variables, 
preprocessing techniques for 

standardization, and the 
procedure for splitting the 
dataset into training and testing 
subsets for machine learning 
model development. 

The dataset used in this study 
was compiled from multiple 
research publications and 
industry reports on carbon 
emissions in residential 
construction projects. The 
primary variables considered 
include emissions from the 
construction stage (Ucon), 
transportation stage (Umt), 
operational stage (Uope), and 
demolition stage (Udem). The 
total carbon footprint (Utot) was 
calculated as the sum of 
emissions across these stages 
expressed as Equation (1). 

 
𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑈𝑈𝑚𝑚𝑚𝑚 + 𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑(1) 

 
Each stage was further defined 
by specific input variables, such 
as material production emissions 
∑Wmp,iSmp,i (in MPa), fuel 
consumption during 
transportation ∑SmtFC (in km/L), 
and operational energy 
consumption (Noa + Nol + 
Noe)Sele where Sele represents 
energy efficiency coefficients. 



ISSN: 2180-3811         Vol. 16     No. 2    July - December 2025

Journal of Engineering and Technology 

196

Journal of Engineering and Technology 

6 
ISSN: 2180-3811 Vol. XX No. X 

 

The demolition stage was 
estimated as a percentage of the 
initial construction emissions 
using the equation Udem = 

0.1×Ucon [5]. Table 1 presents 
the ranges of key variables used 
in the dataset. 

 
Table 1: Ranges of Key Variables in the Dataset 

Variable Minimum Value Maximum Value 
Ucon (MPa) 11000 414670 
Umt (km/L) 2.06 17.82 
Uope (kWh) 2949 26000 

Udem (kg CO₂) 88.93 239 
 

Before the data could be 
utilized for machine learning, it 
underwent cleaning and 
standardization to eliminate 
inconsistencies and ensure 
comparability across different 
sources. Missing values were 
addressed using linear 
interpolation, particularly for 
emission factors that varied 
between studies. 
Standardization was performed 
by scaling the variables to a 
uniform range, ensuring that all 
numerical features were 
normalized between their 
respective minimum and 
maximum values. This 
preprocessing step prevented 
certain variables from 
disproportionately influencing 
the model due to their larger 
numerical scales. Additionally, 

outliers were examined and 
removed to improve prediction 
accuracy and model stability. 

Once the dataset was cleaned 
and standardized, it was split 
into training and testing subsets 
to develop and evaluate the 
machine learning models. An 
80/20 ratio was used, where 80% 
of the data (1,600 samples) was 
allocated for training, and the 
remaining 20% (400 samples) 
was reserved for testing. The 
training dataset was used to 
optimize model parameters and 
learn patterns, while the testing 
dataset provided an unbiased 
evaluation of the model’s 
predictive accuracy. This 
division ensured that the models 
could generalize well to unseen 
data, reducing the risk of 
overfitting. The RTree and 



ISSN: 2180-3811         Vol. 16     No. 2    July - December 2025

A Comparative Analysis of Fine Tree Regression and ANFIS for Predicting Carbon  
Footprints in Residential Construction

197

Journal of Engineering and Technology 

7 
ISSN: 2180-3811 Vol. XX No. X 

 

ANFIS models were trained 
separately, with hyperparameter 
tuning applied during cross-
validation to enhance predictive 
performance. 

 
B. Machine Learning Model 

Development 
To enable accurate prediction 

of carbon emissions in 
residential construction projects, 
two supervised machine 
learning techniques were 
selected for evaluation: RTree 
and ANFIS. These models were 
chosen due to their proven 
performance in nonlinear 
regression problems and their 
ability to handle complex 
datasets with diverse input 
variables [15, 16]. Both models 
were implemented using 
MATLAB, and each was trained 
and tested using a dataset 
comprising carbon emissions 
data from various life cycle 
stages. The purpose of 
developing these models was to 
compare their predictive 
performance in estimating total 
and stage-specific carbon 
footprints, ultimately identifying 
the most suitable approach for 

sustainable construction 
forecasting. 

The RTree model is a type of 
decision tree regression 
algorithm that recursively 
partitions the dataset into 
smaller subsets by identifying 
optimal split points [17]. The 
tree structure is formed by 
choosing features and thresholds 
that minimize variance within 
the target variable, in this case, 
the carbon footprint. During 
model training, hyperparameters 
such as the leaf size and 
maximum depth were tuned 
using a five-fold cross-
validation approach. This 
iterative process helped reduce 
overfitting and improved 
generalization [18]. The model 
was developed and tested across 
all life cycle stages, which are 
construction, transportation, 
operation, and demolition, as 
well as for the total emissions. 
Figure 1 illustrates the structure 
of a typical RTree used in this 
study, where decision nodes 
represent feature conditions and 
terminal nodes represent 
predicted carbon emission 
values. 
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Figure 1: Structure of Fine Tree 

Regression Model 
 

The adaptive neuro-fuzzy 
inference system combines 
neural network learning 
capabilities with fuzzy logic 
principles to model complex 
nonlinear relationships between 
input and output variables [19, 
20]. ANFIS is structured with 
layers that include fuzzification 
of inputs, rule evaluation, and 
output defuzzification. In this 
study, the ANFIS model was 
trained using the same dataset as 
the RTree model, segmented 
across different construction 
stages. Triangular membership 
functions were used to define 
fuzzy sets for input variables, 
and the number of membership 
functions was optimized to 
balance model complexity and 
accuracy. During training, the 
system learned the optimal 
parameters for each fuzzy rule 
using a hybrid learning 
algorithm that combined 

gradient descent and least 
squares estimation. Figure 2 
provides a schematic overview 
of the ANFIS architecture used 
for prediction. 

 
Figure 2: ANFIS Architecture for 

Carbon Emission Prediction 
 

C. Model Evaluation Metrics 
The effectiveness of a 

predictive model is contingent 
on how accurately it can 
estimate values when applied to 
previously unseen data. In this 
study, the performance of the 
RTree and ANFIS models was 
assessed using four widely 
recognized evaluation metrics. 
These include MAE, RMSE, 
MAPE and MSLE. Each metric 
provides a unique perspective on 
the deviation between predicted 
and actual carbon emission 
values. The combination of 
these metrics offers a 
comprehensive assessment of 
both absolute and relative 
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prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 

Journal of Engineering and Technology 

9 
ISSN: 2180-3811 Vol. XX No. X 

 

prediction errors, allowing for a 
robust comparison of model 
performance across different 
stages of the residential building 
life cycle. 

The MAE quantifies the 
average magnitude of errors 
between predicted values and 
actual observations. It is a 
straightforward and 
interpretable metric that 
measures the absolute deviation 
without considering the 
direction of the error. MAE is 
particularly valuable for 
understanding how much, on 
average, the model’s predictions 
deviate from true values. It is 
defined mathematically as 
Equation (2). 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏
∑ |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊̂𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏                    

(2) 
 
where: 
𝑦𝑦𝑖𝑖 = actual value 
𝑦𝑦𝑖̂𝑖 = predicted value 
𝑛𝑛 = number of observations 
 

A lower MAE indicates a more 
accurate model, and because it is 
not sensitive to outliers, it 
provides a balanced view of 
average error magnitudes. The 
RMSE measures the square root 

of the average squared 
differences between the 
predicted and actual values. 
Unlike MAE, RMSE penalizes 
larger errors more heavily due to 
the squaring of residuals, 
making it particularly useful 
when large deviations are 
undesirable. The formula for 
RMSE is shown in Equation (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 

 
RMSE is often used in 
regression analysis as a key 
indicator of model performance, 
especially when higher precision 
is needed. A model with a lower 
RMSE value demonstrates a 
stronger capability to predict 
carbon emissions with minimal 
large-scale error fluctuations. 

The MAPE expresses the 
prediction error as a percentage, 
providing insight into the 
relative size of the error in 
comparison to the actual values. 
MAPE is particularly valuable in 
real-world applications where 
understanding the error in 
percentage terms aids in 
interpretability. The formula for 
MAPE is shown in Equation (4). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡

|𝑛𝑛
𝑡𝑡=1              (4) 



ISSN: 2180-3811         Vol. 16     No. 2    July - December 2025

Journal of Engineering and Technology 

200

Journal of Engineering and Technology 

10 
ISSN: 2180-3811 Vol. XX No. X 

 

where: 
𝐴𝐴𝑡𝑡 = actual values at time (𝑡𝑡) 
𝐹𝐹t = forecasted values at time (𝑡𝑡) 
 
While MAPE is intuitive, it can 
be sensitive when actual values 
are very small, which can distort 
the percentage error. 
Nevertheless, it remains one of 
the most widely used metrics for 
evaluating forecasting models, 
particularly in sustainability 
assessments. 

The MSLE evaluates the ratio 
between the actual and predicted 
values on a logarithmic scale. 
This metric is particularly 
suitable for datasets where 
values span multiple orders of 
magnitude or when the goal is to 
penalize underestimations more 
gently than overestimations. The 
MSLE formula is Equation (5). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ ( log(1 + 𝐴𝐴𝑡𝑡)

− log(1 + 𝐹𝐹𝑡𝑡)
)
2

𝑛𝑛
𝑡𝑡=1  (5) 

 
By transforming both actual 

and predicted values using the 
logarithmic function, MSLE 
captures relative differences and 
is less sensitive to large absolute 
errors. This makes it especially 
relevant in the context of carbon 
footprint prediction, where 

emission values can vary 
substantially between 
construction stages and projects. 
Lower MSLE values signify that 
the model is effective at 
capturing proportional 
differences, which is essential 
for accurate long-term 
sustainability forecasting. 
 
D. Hyperparameter 

Optimization  
The accuracy and 

generalizability of machine 
learning models can be 
significantly influenced by the 
configuration of their internal 
parameters, known as 
hyperparameters. These 
parameters are not learned 
during the training process but 
must be defined prior to model 
training. Hyperparameter 
optimization involves 
systematically tuning these 
values to enhance predictive 
performance. For this study, 
both the RTree and ANFIS 
models underwent optimization 
procedures tailored to their 
respective architectures. By 
applying cross-validation and 
iterative testing, the models 
were refined to achieve optimal 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ ( log(1 + 𝐴𝐴𝑡𝑡)

− log(1 + 𝐹𝐹𝑡𝑡)
)
2

𝑛𝑛
𝑡𝑡=1  (5) 

 
By transforming both actual 

and predicted values using the 
logarithmic function, MSLE 
captures relative differences and 
is less sensitive to large absolute 
errors. This makes it especially 
relevant in the context of carbon 
footprint prediction, where 

emission values can vary 
substantially between 
construction stages and projects. 
Lower MSLE values signify that 
the model is effective at 
capturing proportional 
differences, which is essential 
for accurate long-term 
sustainability forecasting. 
 
D. Hyperparameter 

Optimization  
The accuracy and 

generalizability of machine 
learning models can be 
significantly influenced by the 
configuration of their internal 
parameters, known as 
hyperparameters. These 
parameters are not learned 
during the training process but 
must be defined prior to model 
training. Hyperparameter 
optimization involves 
systematically tuning these 
values to enhance predictive 
performance. For this study, 
both the RTree and ANFIS 
models underwent optimization 
procedures tailored to their 
respective architectures. By 
applying cross-validation and 
iterative testing, the models 
were refined to achieve optimal 
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accuracy across all stages of the 
residential building life cycle. 
For the RTree model, the key 
hyperparameters included the 
minimum leaf size and the 
maximum number of splits. A 
five-fold cross-validation 
approach was employed to 
assess model performance 
across different configurations, 
ensuring the selection of 
parameters that minimized the 
risk of overfitting. For the 
ANFIS model, the optimization 
focused on the number and type 
of membership functions used in 
the fuzzy inference system. 
Triangular membership 
functions (trimf) were selected 
for their balance between 
simplicity and modeling 
capacity, and the number of 
fuzzy rules was adjusted 

accordingly. The results of the 
hyperparameter tuning are 
summarized in Table 2, which 
presents the best-performing 
configurations based on RMSE 
and MSE across different life 
cycle stages. 

Table 2 demonstrates that 
ANFIS consistently achieved 
lower RMSE and MSE values 
across all stages compared to the 
RTree model. This outcome 
highlights the effectiveness of 
ANFIS in capturing nonlinear 
relationships through its hybrid 
neuro-fuzzy architecture. 
Moreover, the optimization 
process confirmed the 
importance of selecting 
appropriate hyperparameters to 
ensure precise and reliable 
carbon footprint predictions in 
residential construction contexts. 

 
Table 2: Optimized Hyperparameters and Performance Metrics for Fine Tree and 

ANFIS Models 

Stage Model Optimized 
Parameter(s) RMSE MSE 

Construction RTree Leaf size = 50 0.514 1.53 × 10⁻¹² 
Transportation RTree Leaf size = 30 447.07 6.53 × 10⁻⁸ 

Operational RTree Leaf size = 15 1179.3 5.18 × 10⁻⁷ 
Demolition RTree Leaf size = 50 0.061 1.74 × 10⁻¹⁵ 

Total RTree Leaf size = 50 1608.6 1.47 × 10⁻⁴ 

All Stages ANFIS Membership 
function = trimf 

0.000 – 
0.013 

1.53 × 10⁻¹² 
– 1.47 × 10⁻⁴ 
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III. Results and Discussion 
This section presents a 

comparative analysis of the 
RTree and ANFIS across all 
major stages of a residential 
building’s life cycle. The 
performance of each model was 
evaluated using four key 
metrics: MAE, RMSE, MAPE, 
MSLE. These metrics allow for 
a robust assessment of 
prediction accuracy, enabling 
identification of the most 
effective model for estimating 
carbon emissions. The 
discussion is organized by 
construction stages, providing 
insights into model behavior 
under varying conditions and 
data distributions. Figures 
accompanying each subsection 
illustrate metric values for visual 
comparison. 

 
A. Comparison of Model 

Performance Across 
Construction Stages 

In the production stage, the 
ANFIS model consistently 
outperformed the RTree model 
across all evaluation metrics. As 
shown in Figure 3, ANFIS 
achieved lower MAPE and 
MSLE values, indicating its 
superior ability to generalize 

patterns from the training data 
and deliver more accurate 
predictions. The MAPE of 
ANFIS was significantly lower, 
suggesting that its relative error 
was smaller than that of RTree. 
Similarly, MSLE values 
revealed that ANFIS handled 
variations in scale more 
effectively, maintaining stability 
even when the emission values 
ranged widely. These results 
suggest that ANFIS is more 
capable of capturing the 
nonlinear relationships that 
characterize material production 
emissions, which are often 
influenced by multiple 
interacting factors such as 
material type, volume, and 
energy intensity. 

 
Figure 3: Comparison of ANFIS and 

RTree Model Performance in the 
Production Stage 

 
In the transportation stage, a 

similar trend was observed. 
ANFIS again demonstrated 
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better predictive performance 
than the RTree model, as 
illustrated in Figure 4. The 
transportation stage involves 
emissions generated from the 
movement of construction 
materials to site locations, which 
often varies depending on fuel 
efficiency, vehicle type, and 
transportation distance. ANFIS, 
with its fuzzy logic capabilities, 
proved more effective in 
managing this variability. 

 
Figure 4: Model Evaluation at the 
Transportation Stage Using MAPE 

and MSLE Metrics 
 

The RMSE and MAPE values 
were consistently lower for 
ANFIS, confirming that it 
produced more accurate 
forecasts with fewer large errors. 
In contrast, the RTree model 
showed slightly higher 
variability in predictions, which 
could be attributed to its 
deterministic partitioning 

strategy that may not capture 
nuanced changes in input 
parameters. 

During the operational stage, 
which accounts for long-term 
energy consumption such as 
lighting, heating, and cooling, 
ANFIS once again outperformed 
RTree, as shown in Figure 5. 

 
Figure 5: Performance of ANFIS and 

RTree Models in the Operational 
Stage 

 
The difference in model 

accuracy became more 
pronounced in this phase due to 
the complex interplay between 
occupancy behavior, appliance 
efficiency, and energy demand. 
ANFIS maintained lower MAPE 
and MSLE values across most of 
the test samples, suggesting it 
could better approximate the 
time-dependent and usage-based 
characteristics of operational 
emissions. RTree, although 
competent, showed an increase 
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in both absolute and percentage-
based errors in this stage, 
reflecting its limited adaptability 
to continuous temporal trends 
within operational datasets. 

In the demolition stage, both 
models exhibited relatively 
close performance, given the 
more predictable nature of end-
of-life building activities. 
However, as depicted in Figure 
6, ANFIS still achieved slightly 
lower RMSE and MAPE values 
than RTree. 

 
Figure 6: Evaluation of Carbon 

Emission Prediction Accuracy in the 
Demolition Stage 

 
The demolition stage typically 

involves repetitive processes 
such as material removal, waste 
handling, and site clearing, 
which tend to generate emission 
patterns with lower variance. 
Despite the smaller performance 
gap, ANFIS demonstrated 
greater consistency in prediction, 
likely due to its ability to model 

even minor nonlinear 
fluctuations through its fuzzy 
inference mechanism. RTree, in 
contrast, performed adequately 
but with slightly larger 
deviations from actual values in 
certain test instances. 

In the overall carbon footprint 
estimation, which aggregates 
emissions across all life cycle 
stages, ANFIS clearly emerged 
as the more robust model. Figure 
7 illustrates a substantial 
reduction in both MAPE and 
MSLE when using ANFIS 
compared to RTree. The 
integrated nature of total 
emissions increases the 
complexity of the prediction task, 
as it involves cumulative 
uncertainties and interactions 
across stages. ANFIS, trained on 
multidimensional inputs 
spanning the entire building 
process, demonstrated superior 
ability to model these 
interactions. Its low RMSE and 
MSE values confirm its overall 
accuracy, making it a more 
reliable tool for practitioners 
aiming to forecast total 
environmental impact. In 
contrast, RTree, while 
interpretable and easier to 
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implement, was more 
susceptible to compounded 
errors across the stages, 

resulting in less precise total 
emissions predictions. 

 
Figure 7: Total Carbon Footprint Prediction Accuracy Across All Life Cycle 

Stages a) MAPE for ANFIS, b) MAPE for Rtree, c) MSLE for ANFIS, and d) 
MSLE for Rtree 

 
B. Model Strengths and 

Weakness 
The comparative analysis 

between the RTree and ANFIS 
models revealed distinct 
strengths and limitations 
inherent to each approach. 
ANFIS consistently 
outperformed RTree cross all 
life cycle stages, particularly in 
scenarios involving complex, 
nonlinear relationships among 
input variables. This advantage 
can be attributed to ANFIS’s 
hybrid architecture, which 
combines the learning capability 

of neural networks with the 
interpretability of fuzzy 
inference systems. As a result, 
ANFIS demonstrated a higher 
degree of flexibility and 
accuracy in modeling emission 
patterns that vary due to factors 
such as energy consumption, 
construction material diversity, 
and user behavior in operational 
stages. 

One of the most notable 
strengths of ANFIS is its 
adaptability to uncertainty and 
imprecision in input data. In the 
context of carbon footprint 
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prediction, where input 
parameters are often derived 
from heterogeneous sources or 
subject to estimation, this 
characteristic allows for more 
robust performance. 
Furthermore, the model's 
capacity to learn complex 
patterns during training enables 
it to generalize effectively across 
diverse project scenarios. 
However, this sophistication 
comes at the cost of increased 
computational complexity. 
Training ANFIS requires careful 
tuning of membership functions 
and fuzzy rules, and the model 
may become computationally 
intensive as the number of input 
features increases. 

On the other hand, the Fine 
Tree model offers several 
practical advantages, 
particularly in terms of 
simplicity and interpretability. 
Its decision-tree structure 
provides a clear and intuitive 
representation of how input 
features influence the predicted 
output, making it useful for 
practitioners seeking 
transparency in their decision-
making tools. The Fine Tree 
model also trains relatively 

quickly and performs well when 
the relationship between inputs 
and outputs is more linear or 
when datasets are relatively 
clean and structured. 
Nevertheless, its performance 
was generally inferior to that of 
ANFIS, particularly in handling 
high-dimensional data and 
capturing subtle interactions 
between features. The tendency 
of decision trees to overfit or 
underfit, especially when 
hyperparameters are not 
optimally tuned, further limited 
the RTree model’s predictive 
accuracy. 

In summary, while both 
models are viable for carbon 
footprint prediction, ANFIS 
presents a more powerful 
solution for complex and 
variable construction datasets, 
whereas RTree may be more 
appropriate for straightforward 
applications requiring speed and 
interpretability. The choice of 
model should therefore be 
guided by the specific 
requirements of the project, 
including the nature of the data, 
computational resources 
available, and the desired 
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balance between accuracy and 
transparency. 
 
C. Practical Implications for 

Sustainable Construction 
The findings of this study offer 

substantial practical value for 
advancing sustainable practices 
within the construction industry, 
particularly in the domain of 
residential development. By 
demonstrating the superior 
performance of the ANFIS 
model over the Fine Tree 
regression approach in 
predicting carbon emissions 
across various life cycle stages, 
this research provides a data-
driven pathway for stakeholders 
to integrate intelligent 
forecasting tools into their 
planning and design workflows. 
The predictive capabilities of 
ANFIS can assist architects, 
engineers, and project managers 
in evaluating the environmental 
impact of different construction 
strategies at an early stage, 
thereby enabling informed 
decisions that align with 
sustainability goals. 

Moreover, the implementation 
of a user-friendly interface 
through MATLAB GUI, as 

developed in this study, 
facilitates broader accessibility 
and practical deployment of the 
model. This tool can be utilized 
by professionals without 
advanced programming 
expertise, allowing seamless 
input of project specifications 
and real-time visualization of 
projected carbon footprints. 
Such integration empowers 
decision-makers to identify 
carbon-intensive phases, 
compare alternative materials or 
methods, and prioritize 
emissions reduction strategies in 
accordance with regulatory 
standards and environmental 
certifications, such as LEED or 
GreenRE. 

The use of machine learning 
models also supports 
compliance with emerging 
national and international 
climate policies, as governments 
increasingly mandate carbon 
accounting and emission limits 
in the built environment. The 
models presented here can serve 
as part of a larger digital toolkit 
for green construction, where 
simulation and optimization are 
key to minimizing both 
embodied and operational 
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carbon. By providing rapid and 
accurate feedback on design 
scenarios, this study enables a 
shift from reactive to proactive 
sustainability planning, thereby 
reinforcing the construction 
sector’s role in climate action 
and environmental stewardship. 
 
IV. Conclusion 

This study presented a 
comparative analysis of two 
machine learning approaches 
which are RTree and ANFIS for 
predicting carbon footprints 
across the life cycle stages of 
residential construction projects. 
The results demonstrated that 
ANFIS consistently 
outperformed the Fine Tree 
model in terms of accuracy, 
generalization, and robustness, 
as evidenced by lower error rates 
across multiple evaluation 
metrics including MAE, RMSE, 
MAPE, and MSLE. The ANFIS 
model's hybrid architecture 
enabled it to effectively capture 
nonlinear relationships and 
manage uncertainties inherent in 
construction-related datasets. In 
contrast, while the Fine Tree 
model offered benefits in terms 
of simplicity and interpretability, 

its predictive performance was 
generally lower, particularly in 
stages with complex emission 
dynamics. By integrating the 
optimized ANFIS model into a 
MATLAB-based graphical user 
interface, this study also 
contributes a practical tool that 
can support sustainability-
focused decision-making in real-
world construction settings. 
Overall, the findings underscore 
the potential of advanced 
machine learning techniques to 
enhance environmental 
assessment in the built 
environment, thereby promoting 
more sustainable and data-
driven construction practices. 
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