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Abstract— Continuous and dense
observations from the Global Navigation
Satellite System (GNSS) have emerged as
a pivotal tool for drought monitoring.
Currently, the most prevalent approaches
for drought monitoring using GNSS data fall
into two categories: hydrological drought
monitoring, which relies on the inversion of
terrestrial water storage (TWS) variations,
and meteorological drought monitoring,
derived from atmospheric precipitable
water vapour (PWV). While GNSS has
become a focal point of research in
hydrogeology, comprehensive studies
systematically exploring the use of GNSS
data in extreme drought monitoring still
need to be expanded. Few studies have
provided a comprehensive and systematic
overview of meteorological and

This is an open-access journal that the content is freely available without charge to the user or
corresponding institution licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

ISSN: 2180-3811 Vol. 16 No.1 January - June 2025 95



Journal of Engineering and Technology

hydrological drought monitoring based on
GNSS data. This study utilizes bibliometrics
to analyze GNSS-based extreme drought
monitoring research, explores its principles

and methods,

and discusses current

limitations and future directions, aiming to
guide future research on regional drought
changes and applications using GNSS

technology.

I. Introduction

Drought, a widely recognized
natural disaster, has the most
extensive impact and causes the
significant agricultural losses. It
also severely affects the
ecological environment and
socioeconomic conditions [1].
Under the combined influence of
climate change and human
activities drought exhibits an

increasing frequency of

occurrence and escalating losses.

A standard definition of drought
categorizes it into four primary
types: meteorological drought,
hydrological drought,
agricultural ~ drought,  and
socioeconomic drought [2].

The GNSS represents a
pioneering environmental
remote sensing method, and
offering geodetic-based
strategies for drought
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monitoring [3]. While GNSS has
become a focal point of research
in hydrogeology,
comprehensive studies
systematically exploring the use
of GNSS data in extreme
drought monitoring still need to
be expanded. Few studies have
provided a comprehensive and
systematic overview of
meteorological and hydrological
drought monitoring based on
GNSS data.

This study first employs
bibliometric analysis to examine
recent trends and characteristics
of research on extreme drought
monitoring using GNSS. Second,
it delves into the fundamental
principles and methods of
hydrological and meteorological
drought monitoring based on
GNSS  data.  Finally, it
summarizes and discusses the
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current limitations and future
development trends of GNSS
drought monitoring.

II. Methodology

A manual query was conducted
in the Web of Science, focusing
on SCI (Science Citation Index)
and SSCI (Social Science
Citation Index). The search term

‘TS=(“GNSS” OR “Global
Navigation Satellite System”
OR “GPS”) AND

TS=(“Drought”)’ was applied to

relevant articles on drought
monitoring using GNSS data
(search date: June 1, 2024).
After reviewing abstracts, 72
highly relevant articles,
excluding review papers, were
selected for further analysis
(Figure la). Figure 1b shows
the increasing trend of
publications on this topic over
the years, with prominent
journals  including  Remote
Sensing, Geophysical Research

Letters, Science of the Total

retrieve GNSS-based drought Environment, and Journal of
studies. The study identified 241 Hydrology.
i &a) ' I -IThe mllrnber ;fpapelrs (b)

Value
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74.7%
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°42%  6.9%

Figure 1: Number of papers and the proportion of published journals on monitoring
drought changes using GNSS

III. GNSS Drought
Monitoring Indices

A. Drought Index Based on
GNSS derived TWS
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Recent progress in geodetic
technologies has greatly
advanced the monitoring of
TWS changes caused by the
global [4],

water  cycle
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establishing hydrological
geodesy as a specialized
discipline. Among these

methods, The Gravity Recovery
and Climate Experiment
(GRACE) is one of the most
commonly used tools for large-
scale TWS observation [5].
However, its spatial resolution
constraints make it difficult to
detect TWS fluctuations at
distances below approximately
300 km [6].

On the other hand, GNSS
stations, by recording crustal
deformation resulting from
elastic responses to hydrological
loading, offer an independent
means of monitoring TWS [7-8].
Their heightened sensitivity to
regional hydrological shifts [9]
positions GNSS as an essential
complement and alternative to
GRACE in
applications [10].

In 2014, Thomas et al
demonstrated that anomalies in
the changes of the TWS, both
deficits and surpluses, can serve
as indicators for quantifying
extreme drought and flood
events. In their study, water
storage deficit (WSD) is defined
as the disparity between changes

smaller-scale
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in monthly water storage and the
climatological average for the
same month.

WSD;; = TWSA;; 0
—TWSA,
where:

WSD; ;= Difference between the
TWSA time series and the
monthly mean of TWSA values
TWSA4;; = TWSA time series
for the j-th month in i-th year
TWSA,= The long-term mean of

TWSA for the same j-th month

Based on the method
described above, the high
spatiotemporal resolution the
TWS changes inverted from
GNSS
utilized for studying localized
short-term

observations can be
climate
GNSS
inverted TWS has been applied
to the study of extreme drought
events in regions such as
California, Brazil, Southwest
China, and the Tibetan Plateau,
demonstrating remarkable
capabilities in  hydrological
drought monitoring [11-13].
Using the northeastern Tibet
Plateau from 2011 to 2022 as an
example, Figure 2 compares the

extreme

events. Currently,
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drought indices GNSS-DSI
obtained from GNSS, GRACE-
DSI obtained from GRACE, and
the  self-calibrating  Palmer
Drought Severity Index
(scPDSI). The correlation results
indicate a value of 0.63 for
GNSS-DSI and GRACE-DSI,

and 0.43 for GNSS-DSI and
scPDSI,  indicating  similar
temporal characteristics among
the three datasets and the results
point to GNSS being a valuable
resource for observing and
evaluating hydrological drought
patterns.

RI=0.63

3 I 1
2011 2012 2014 2016

T
——scPDSI
——GRACE-DS|

——GNSS-DSI J

2018 2020 2022

Figure 2: Patterns of drought indices observed in the investigated area [14]

IV. Drought index based on
GNSS-derived PWV

As  signals
atmosphere, they are subject to
delays caused by atmospheric
refraction and bending within
the troposphere.  Advanced
parameter estimation methods in
GNSS data processing allow the
calculation of these delays and,
when integrated with ground-
based meteorological data,
facilitate the determination of
atmospheric PWV [15].

traverse  the
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In the realm of drought
monitoring, the primary
applications of GNSS-derived
PWV encompass two aspects:
enhancing existing drought
monitoring indices and
developing new drought indices.

In the context of improving
drought monitoring indices,
research demonstrate that by
incorporating ~ GNSS-derived
PWYV, temperature, and pressure
data, the commonly utilized
Thornthwaite model can
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significantly =~ enhance  the
calculation of Potential
Evapotranspiration (PET),

thereby improving the drought
monitoring capabilities of the
Standardized Precipitation
Evapotranspiration Index (SPEI)
[16-18].

Drought indices based on
PWV rely on examining how

atmospheric water  vapor
transitions into precipitation,
offering insights into

precipitation efficiency (PE) and
its influence on precipitation
processes [19].

More precisely, PE, as
described in Equation (2) [20], is
measured as the ratio of water
vapor above a site to the
precipitation deposited on the
Earth’s surface :

PE = —— x 100 (2)
PWV
where:
PE = Precipitation efficiency
P = Monthly average
precipitation
PWV = Precipitable Water
Vapor
Building on the
aforementioned approach,
100 ISSN: 2180-3811

GNSS-derived PWV has been
widely employed by researchers
for drought assessment,
benefiting from its
resolution in time and space,
long-term data series, and
insights into

water  vapor

superior

accurate
atmospheric
variations [21-22].

Considering the limitation of
the traditional drought index. In
2020, Zhao et al introduced the
Standardized Precipitation
Conversion Index (SPCI) for
improvement, enabling the
identification of multi-scale
meteorological droughts.

Currently, the SPCI has
demonstrated excellent drought
monitoring  capabilities  in
Yunnan and Guangdong
provinces of China, as well as in
the southern region of Spain [23-
24].

Figure 4 uses Guangdong
Province as an example to
compare the SPCI-derived
meteorological drought index
with the widely adopted SPI and
SPEI indices [25]. Analysis
revealed strong correlations
between SPCI and these indices
across multiple timescales.

Moreover, drought  event
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severity grew as the temporal
lengthened across all
underscoring SPCI’s

scale
indices,

capacity to effectively monitor
extreme drought conditions in
Guangdong.
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Figure 3: Displays a comparison of climate indices across various time scales,
focusing on SPCI, SPI, and SPEI

V. Conclusion

With  GNSS
advancing steadily, its use in
drought monitoring has become
increasingly  recognized. A
significant rise in publications is
evident, with many studies

technology

published in leading journals,

This article presents the
principles and methodologies of
drought monitoring utilizing
GNSS, reviews its application
advancements in hydrological
and  atmospheric  drought
monitoring, and summarizes the
shortcomings of existing GNSS

including Remote Sensing,  techniques in drought
Geophysical Research Letters,  assessment. Despite the notable
Science of  the Total  correlation between GNSS-
Environment, and Journal of  based and conventional drought
Hydrology. indices, their application in
monitoring accuracy  and
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reliability must address
challenges related to site density
and extraneous non-hydrological
factors.

Therefore, future research
should concentrate on
integrating GNSS technology
with other remote sensing tools
to expand the coverage of GNSS
stations, thereby further
augmenting drought monitoring
capabilities. Additionally, as
interdisciplinary ~ connections
become increasingly robust, the
drought monitoring potential
exhibited by GNSS will furnish
vital references for
meteorological and hydrological
agencies in devising effective
drought mitigation strategies.
Specifically, GNSS-based
drought monitoring capabilities
can provide early warnings and
decision support for agricultural

production, ecosystem
management, and
socioeconomic development

directly impacted by drought.
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