Classification of Cornel Arcus using Texture Features with Bayesian Regulation Back Propagation
Abstract
The corneal arcus (CA) is an eye problem frequently faced by some group of people. The CA signs indicate the presence of abnormal lipid in blood and can cause several problems such as blood pressure, diabetes, and hyperlipidemia. This paper presents a comparison of classification of the abnormal eye using a neural network. In order to extract the image features, the gray level co-occurrence matrix (GLCM)was used. This matrix measures the texture of the image, where the statistical calculation can be used to present the image features. The Bayesian Regulation (BR) algorithm has been proposed, in which this classifier classifies the obtained results better than previous works by other researchers. In this experiment, two classes data-set of the eye image, normal and abnormal images CA are used. The results from this BR classifier demonstrate a sensitivity of 96.1 % and a specificity of 98.6 %. The overall accuracy of this proposed system is 97.6 %. Although this classifier does not obtain 100 % accuracy, however its result is proven to be able to classify the CA images successfully.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Thank you for your interest in submitting your manuscript to the Journal of Engineering and Technology (JET).
JET publishes only original works. Manuscripts must not be previously published or under consideration by any other publications. Papers published in JET may not be published again in whole or in part without permission. Please review these guidelines for researching, writing, formatting and submitting your manuscript. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).
Those submitting manuscripts should be carefully checked to ensure that all works contributed to the manuscript are acknowledged. The list of authors should include all those who can legitimately claim authorship. Manuscript should only be submitted for consideration once consent is given by all contributing authors using Transfer of Copyright form.