Classification of Spike-wave Discharge with STFT Approach
Abstract
Spike-Wave Discharge (STD) is an abnormal brainwave pattern in the brain area that has possibility of generating an epilepsy seizure. The brainwave can be recorded by using Electroencephalogram (EEG) device. The purpose of this paper is to classify STD that occurred in epilepsy patient using k-Nearest Neighbor (kNN) with Short-Time Fourier Transform (STFT) approach. The EEG signals were downloaded from an established website that consisted of epilepsy and non-epilepsy samples. The process of artifact removal was done to ensure that the generated EEG signals and STFT were clean. Then, energy is extracted from STFT for four bands, namely Delta-band, Theta-band, Alpha-band and Beta-band. The experimental result showed that the kNN was able to classify the STD waves with 100% accuracy for the tested ratio training of 80:20.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Thank you for your interest in submitting your manuscript to the Journal of Engineering and Technology (JET).
JET publishes only original works. Manuscripts must not be previously published or under consideration by any other publications. Papers published in JET may not be published again in whole or in part without permission. Please review these guidelines for researching, writing, formatting and submitting your manuscript. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).
Those submitting manuscripts should be carefully checked to ensure that all works contributed to the manuscript are acknowledged. The list of authors should include all those who can legitimately claim authorship. Manuscript should only be submitted for consideration once consent is given by all contributing authors using Transfer of Copyright form.