Power Quality Improvement Based On PSO Algorithm Incorporating UPQC
Keywords:
Unified Power Quality Conditioner (UPQC), Optimal Tuned Synchronous Reference Frame (OTSRF) Theory, Particle Swarm Optimization (PSOAbstract
The usage of the term power quality is increasing day by day with extensive usage of large capacity loads and nonlinear loads. The major power quality issues are voltage disturbances and current disturbances in the present-day power systems. Today, with the advent of power semiconductor devices these power quality issues are solved to a great extent. The unified power quality conditioner is one such power semiconductor device which utilizes active filtering methodology to deal with the concerned power quality issues. Here an attempt is made to control and generate the reference currents and voltages for a unified power quality conditioner with the optimal tuned synchronous reference frame theory. The particle swarm optimization is employed to evolve gains of the proportional-integral controller. The unified power quality conditioner is a combination of shunt and series voltage source converters. The hysteresis band current controller for series and the pulse width modulation current controller for the shunt active filter are used for generation of gating pulses required by the switches of the voltage source converters in the unified power quality conditioner. The performance evaluation of multi-objective convergence fitness function (dealing: the voltage sag, the source current variations, and the load voltage variations) with unified power quality conditioner based on particle swarm optimization algorithm is performed. The efficacy of the proposed work is validated by conducting simulations in MATLAB/SIMULINK software environment.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Thank you for your interest in submitting your manuscript to the Journal of Engineering and Technology (JET).
JET publishes only original works. Manuscripts must not be previously published or under consideration by any other publications. Papers published in JET may not be published again in whole or in part without permission. Please review these guidelines for researching, writing, formatting and submitting your manuscript. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).
Those submitting manuscripts should be carefully checked to ensure that all works contributed to the manuscript are acknowledged. The list of authors should include all those who can legitimately claim authorship. Manuscript should only be submitted for consideration once consent is given by all contributing authors using Transfer of Copyright form.